Multi-level Co-Simulation of Mixed Technology Microsystems

<u>S.P. Levitan</u> and D.M. Chiarulli University of Pittsburgh, Pittsburgh, PA, USA

Collaborators: Jose A. Martinez, Mike Bails, Jason Boles, Sam Dickerson, Dave Reed, Leo Selavo, Jason Bakos, Joel Martin, Mark Kahrs -- University of Pittsburgh
Timothy P. Kurzweg -- Drexel University
John Hansson, Michael Wiesser -- Schott Fiber Optics
Charles Kuznia -- Peregrine Semiconductor

Support: National Science Foundation, DARPA, AFOSR, Telcordia, Coventor, Schott Fiber Optics

Motivation: CAD for Mixed Technology

Micro-Systems

- Next generation micro-systems will utilize multiple technologies to perform sensing, computing, control, communications, and actuation tasks for diverse applications.
- The design and analysis of these systems is challenging: spanning multiple technologies, energy domains, length, and time-scales in a tightly coupled but heterogeneous microsystem
- Chatoyant Multi Domain System Simulator
 - Performs end to end system level simulations
 - Analyzes performance of novel multitechnology microsystems

Micromechanics www.eecs.umich.edu/~dperouli/ Research.htm

CAD Support for New Design Flows

- <u>Ideal</u>: Top down, based on good models and fast simulation and analysis tools. Even better to have synthesis
- <u>Real</u>: Collections of tools in different domains cobbled together with script files

System Level Simulation

- Simulation of the entire system can provide:
 - Trade off analyses early in the design cycle
 - Tolerancing and reliability modeling
 - Optimization across technologies
 - Shorter design time, fewer prototypes, lower costs to design
- System Level Simulation:
 - Components, Signals, Transformations, Time
- Multi Technology Simulation
 - Multiple technology domains, Multilevel models, Mixed Signals, Multiple time scales

Evaluation / Simulation Choices

System Level Mixed Technology Modeling Approach

- Partition the system into components
 - reflect hierarchy
 - reduce complexity
 - provide technology based interfaces
- Capture the interaction between components by a discrete event model (multi-domain energy signals)
 - Optical, Electrical, Mechanical, etc.
- Model the dynamics of the multidomain components by a set of piecewise linear ODEs for each of the elements in the component
- Co simulate with compatible discrete event simulators
 - Use PDES techniques

- Mechanics \rightarrow Structural Netlists

© 2005 Steven P. Levitan

RF MEMS Switch System

 Electromechanical capacitance shunt switch designed for Low voltage actuation (from University of Michigan)

RF System Switch Modeling Techniques

Traditional Modeling

- 1. Mechanical Analysis
 - 1. Serpentine Spring Assembly
 - 1. Stiffness
 - 2. Modal Analysis
- 2. Electro-mechanical Analysis
 - 1. Capacitance Model
 - 2. Pull-in Voltage
- 3. Lumped Model Circuit Level Simulation
- 4. Integrate Results

System Level Modeling

- Assemble Mechanical Model
- Compose System Model
- Perform End to End System Simulation

System Simulation Model

End to End Simulation

Electrical response of switch operation

Electro-mechanical response of switch

40 GHz Signal - Switch Actuation

Switch Release - Bounce

64-Channel 3-Chip Optoelectronic Switch

- 3-Chip OE-MCM using mixed analog/digital switch chips in UTSi SoS CMOS
- Each chip: 8 8x8 crossbars, 8x8 VCSEL driver array, 8x8 receiver array

© 2005 Steven P. Levitan

Challenges of Multi Technology Systems

- Must understand the relationships between multiple fabrication processes and system performance
 - What went wrong?
- Must use architectural solutions rather, than fighting process problems
 How to design in robustness?
- Must increase reliability using
 - Redundancy
 - Integral error correction
 - Fault tolerance
 - Self-repair

Conclusions

 Bottom up tool building must precede top down design flow

- Quality models, Transparent, Known fidelity
- Top down design required to support design exploration
 - Component based design
 - Quick feedback on design choices and trade-offs
- Multi-level modeling, simulation and analysis
 - Efficiently support complex models
 - Capture interactions (mixed –domain, multi-level)
 - □ Find the *unexpected* problems
 - Performance analysis
 - Multi-domain interactions

Reduce the need for prototyping (the 1st device)

Support manufacturing (the 1,000,001st device)

