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Runtime Efficiency

Judging the “goodness” of an MPSoC
programming model
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Source:  ANSA (1989) Reference manual, Architecture Project Management.  Camb. UK
International Standard on Open Distributed Processing (ODP) [ISO/IEC, 1996]

Diagram:  Engineering distributed objects, Wolfgang Emerick.
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Unified Kernel Layer
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What is the UKL?
The lowest common denominator, 
supporting…

– Software
• Existing OS
• Existing middleware
• Existing and emerging languages 

(plus extensions)

– Hardware 
• Accelerators
• SMP & NUMA
• Heterogeneous micro-architectures
• Heterogeneous interconnect

Programming model
– Explicit thread based parallelism

• Memory architecture agnostic
– Fork/join model
– Natively event based

• Potential for low power operation
– No compiler directives

Control plane only
– No data plane

– Task state management
• Creation/deletion
• Suspension/resumption
• Synchronisation

– Task scheduling
• Processing resource class based, 

enabling…
– Dynamic load balancing
– Dynamic power management

• Enabling static and dynamic logical 
reconfiguration 

Task based debug
– A definition of task based trace
– Task based breakpoint/watchpoint

sequences

Non proprietary!
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Unified Kernel Layer runtime API
Create…
– TaskNew(…)

• Blocked and unblocked

Manipulate
– Suspend()
– Resume()

Synchronise
– SemaInit()
– SemaDelete()
– SemaSignal()
– SemaWait()

Delete
– TaskDelete(…)
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End
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Scheduling with POSIX pThreads

Policy oriented 
definition
Implicit scheduler 
structure definition
– Implies processing 

resource 
homogeneity

int pthread_create(
pthread_t *tid,
const pthread_attr_t *attr,
void                 *(*start)(void *),
void                 *arg);

struct pthread_attr_t {
void *stackaddr;
size_t stacksize;
int detachstate;
int schedpolicy;
struct sched_param param;
int inheritsched;
int contentionscope;

};

FIFO: SCHED_FIFO

Round robin: SCHED_RR

???:  SCHED_OTHER
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Scheduling with UKL threads

Hierarchy oriented 
definition.
Explicit scheduler 
structure

SyWReturn_t SyWTaskNew(
SyWTCB_t *pTask,
BOOLEAN              IsBlocked);

struct SyWTCB
{

U32 (*fpTask)(void *);
U32 *pParams;
U32 Priority; //Metric0
U32 Metric1;
U16 SchedulingNode;
// Implementation 
// specific params
...

};
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Configuration Diagram - Example
Processor 

classes
Scheduling entry 

Nodes

Ready Queues

Task Ready State

Application
Centric

Hierarchy

RR

Processor 
instances

Platform
Centric

Hierarchy

WFQ

FIFO Priority

Priority

FIFO

FIFO

Platform 
scheduling 

(Load balancing,
power 

management).Application 
scheduling



Copyright © Ignios Ltd. 2004 11

Configuration Diagram - Example
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Runtime Efficiency

Access 
transparency

Location 
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UKL transparency

No support
Possible (implementation dependant)
Partial support
Strong support
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Unified Kernel Layer

Presentation

RPC over UKL
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Client server sequence diagram
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Runtime Efficiency

Access 
transparency

Location 
transparency

Migration 
transparency

Replication 
transparency

Scalability 
transparency

Performance 
transparency

Concurrency 
transparency

Failure 
transparency

RPC over UKL transparency

No support
Possible (implementation dependant)
Partial support
Strong support
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Resource management performance

Resource management 
performance

α System complexity
1

Event frequency
1

Task granularity
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SystemWeaver technology
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Conclusions
UKL abstraction

– Lightweight

– Class based programming 
model

• Scalable applications
• Dynamically scalable power 

consumption

– Event driven
• Low power

– Based on existing thread 
abstractions

• With enhanced scheduling 
capabilities

– Makes debug challenging

Must retain flexibility 

– Static and dynamic 
reconfigurability of control path

– Must inter-operate with existing 
OS technology

Should be open standard
– Judge implementations on their 

merits

Must be efficient at runtime
– Hardware support required



Thank-you


