
A class-based programming
model for heterogeneous MPSoC

MPSoC ‘05
Mark Lippett, Ignios Ltd.

Copyright © Ignios Ltd. 2004 2

Agenda

Existing trends and techniques

The Unified Kernel Layer

Example: RPC over UKL

Performance

Conclusions

Copyright © Ignios Ltd. 2004 3

Runtime Efficiency

Judging the “goodness” of an MPSoC
programming model

Access
transparency

Location
transparency

Migration
transparency

Replication
transparency

Scalability
transparency

Performance
transparency

Concurrency
transparency

Failure
transparency

Source: ANSA (1989) Reference manual, Architecture Project Management. Camb. UK
International Standard on Open Distributed Processing (ODP) [ISO/IEC, 1996]

Diagram: Engineering distributed objects, Wolfgang Emerick.

Copyright © Ignios Ltd. 2004 4

Agenda

Existing trends and techniques

The Unified Kernel Layer

Example: RPC over UKL

Performance

Conclusions

Copyright © Ignios Ltd. 2004 5

Unified Kernel Layer

Unified Kernel Layer

RISCRISC

Interconnect #1 Interconnect #2 Interconnect #n

RISC RISCDSP Hardware
Accelerators IO Devices

B
rid

ge

S
ha

re
d

M
em

or
y

Kernel

GPOS/
RTOS

Legacy
system

management

Middleware Languages &
language extensions

COM CORBA

RPC

RMI
CSP

Plasma

???

Application

OpenMP

Dynamic configuration API & runtime management APIStatic
Configuration

API

Debug API,
trace

schema

Copyright © Ignios Ltd. 2004 6

What is the UKL?
The lowest common denominator,
supporting…

– Software
• Existing OS
• Existing middleware
• Existing and emerging languages

(plus extensions)

– Hardware
• Accelerators
• SMP & NUMA
• Heterogeneous micro-architectures
• Heterogeneous interconnect

Programming model
– Explicit thread based parallelism

• Memory architecture agnostic
– Fork/join model
– Natively event based

• Potential for low power operation
– No compiler directives

Control plane only
– No data plane

– Task state management
• Creation/deletion
• Suspension/resumption
• Synchronisation

– Task scheduling
• Processing resource class based,

enabling…
– Dynamic load balancing
– Dynamic power management

• Enabling static and dynamic logical
reconfiguration

Task based debug
– A definition of task based trace
– Task based breakpoint/watchpoint

sequences

Non proprietary!

Copyright © Ignios Ltd. 2004 7

Unified Kernel Layer runtime API
Create…
– TaskNew(…)

• Blocked and unblocked

Manipulate
– Suspend()
– Resume()

Synchronise
– SemaInit()
– SemaDelete()
– SemaSignal()
– SemaWait()

Delete
– TaskDelete(…)

Init

Blocked

Ready

Executing

End

TaskCreate(…)

T
a
s
k
N
e
w
(
B
l
o
c
k
e
d
,

…
)

SemaSignal(…)

SemaWait(…)
T
a
s
k
D
e
l
e
t
e
(
…
)

preemption

schedule

Suspended
Suspend(…)

R
e
s
u
m
e
(
…
)

Copyright © Ignios Ltd. 2004 8

Scheduling with POSIX pThreads

Policy oriented
definition
Implicit scheduler
structure definition
– Implies processing

resource
homogeneity

int pthread_create(
pthread_t *tid,
const pthread_attr_t *attr,
void *(*start)(void *),
void *arg);

struct pthread_attr_t {
void *stackaddr;
size_t stacksize;
int detachstate;
int schedpolicy;
struct sched_param param;
int inheritsched;
int contentionscope;

};

FIFO: SCHED_FIFO

Round robin: SCHED_RR

???: SCHED_OTHER

Copyright © Ignios Ltd. 2004 9

Scheduling with UKL threads

Hierarchy oriented
definition.
Explicit scheduler
structure

SyWReturn_t SyWTaskNew(
SyWTCB_t *pTask,
BOOLEAN IsBlocked);

struct SyWTCB
{

U32 (*fpTask)(void *);
U32 *pParams;
U32 Priority; //Metric0
U32 Metric1;
U16 SchedulingNode;
// Implementation
// specific params
...

};

Dispatch NodesDistribution NodesEntry Nodes

Ready Queues

Ready State

Application
Decision Node

Hierarchy

Distribution
Decision Nodes

Dispatch NodesDistribution NodesEntry Nodes

Ready Queues

Ready State

Application
Decision Node

Hierarchy

Distribution
Decision Nodes

Scheduling
definition

System
Analysis

Static Scheduler
configuration

Copyright © Ignios Ltd. 2004 10

Configuration Diagram - Example
Processor

classes
Scheduling entry

Nodes

Ready Queues

Task Ready State

Application
Centric

Hierarchy

RR

Processor
instances

Platform
Centric

Hierarchy

WFQ

FIFO Priority

Priority

FIFO

FIFO

Platform
scheduling

(Load balancing,
power

management).Application
scheduling

Copyright © Ignios Ltd. 2004 11

Configuration Diagram - Example
Processor

classes
Scheduling entry

Nodes

Ready Queues

Task Ready State

Application
Centric

Hierarchy

RR

FIFO

FIFO

Programmer’s
visualisation

Application
scheduling

Copyright © Ignios Ltd. 2004 12

Runtime Efficiency

Access
transparency

Location
transparency

Migration
transparency

Replication
transparency

Scalability
transparency

Performance
transparency

Concurrency
transparency

Failure
transparency

UKL transparency

No support
Possible (implementation dependant)
Partial support
Strong support

Copyright © Ignios Ltd. 2004 13

Agenda

Existing trends and techniques

The Unified Kernel Layer

Example: RPC over UKL

Performance

Conclusions

Copyright © Ignios Ltd. 2004 14

Unified Kernel Layer

Presentation

RPC over UKL
RPCall (Args, *pReturnArgs)

Caller

Transport

Stub Stub

Called

Interconnect #1 Interconnect #n
NULL

Shared memory
IO

Datapath
(service request

identifier,
arguments)

Control path
(service task request,

synchronisation,
context management)

Client processing resource Server processing resource

Copyright © Ignios Ltd. 2004 15

Client server sequence diagram
Client

Presentation
& Transport

Layer
UKL
Layer ServerRPC

server stub
RPC

client stub

Presentation
& Transport

Layer

Server
task

request

Client
task

suspend
Server
task

create

Client
task

signal

Client
task

resume

Service
task

schedule

Service
task

schedule

Client task
reschedule

Copyright © Ignios Ltd. 2004 16

Runtime Efficiency

Access
transparency

Location
transparency

Migration
transparency

Replication
transparency

Scalability
transparency

Performance
transparency

Concurrency
transparency

Failure
transparency

RPC over UKL transparency

No support
Possible (implementation dependant)
Partial support
Strong support

Copyright © Ignios Ltd. 2004 17

Agenda

Existing trends and techniques

The Unified Kernel Layer

Example: RPC over UKL

Performance

Conclusions

Copyright © Ignios Ltd. 2004 18

Resource management performance

Resource management
performance

α System complexity
1

Event frequency
1

Task granularity

Copyright © Ignios Ltd. 2004 19

SystemWeaver technology

Unified Kernel Layer

Interconnect #2

RISCRISC

Interconnect #1

RISC RISCDSP

B
rid

ge

Interconnect #n

Hardware
Accelerators IO Devices

S
ha

re
d

M
em

or
y

Kernel

GPOS/
RTOS

Legacy
system

management

Middleware Languages &
language extensions

COM CORBA

RPC

RMI
CSP

Plasma

???

Application

OpenMP

Ignios SystemWeaver™ technology

Layout by Sondrel Ltd.

SystemWeaver
Resource

Management
SIP core

Static
Configuration
Tools

Statistics,
debug

configuration &
trace

Copyright © Ignios Ltd. 2004 20

Agenda

Existing trends and techniques

The Unified Kernel Layer

Example: RPC over UKL

Performance

Conclusions

Copyright © Ignios Ltd. 2004 21

Conclusions
UKL abstraction

– Lightweight

– Class based programming
model

• Scalable applications
• Dynamically scalable power

consumption

– Event driven
• Low power

– Based on existing thread
abstractions

• With enhanced scheduling
capabilities

– Makes debug challenging

Must retain flexibility

– Static and dynamic
reconfigurability of control path

– Must inter-operate with existing
OS technology

Should be open standard
– Judge implementations on their

merits

Must be efficient at runtime
– Hardware support required

Thank-you

