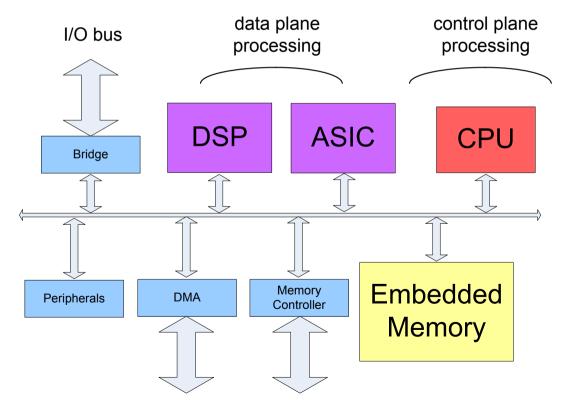
Using Configurable CPUs on SOC Platforms


5th Int'l Forum on Application-Specific Multi-Processor SoC 11 - 15 July 2005, Relais de Margaux, France

Trevor Mudge Bredt Family Professor of Engineering The University of Michigan, Ann Arbor

Typical SoC

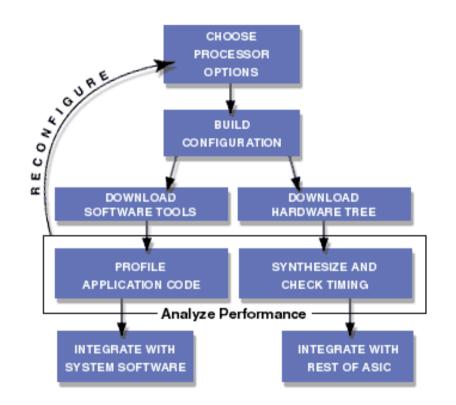
- Custom configurations of existing (IP) cores OMAP
 - control plane processors ARM/MIPS/etc.
 - data plane processor TI 5000/6000/etc.
 - ASICs + glue logic

Why Use Configurable CPUs

- 1. Reduce power and meet performance goals:
 - By absorbing data plane functionality into the control plane CPU
 - tightly coupled new instructions created
 - design time Tensilica, ARC
 - By augmenting or replacing data plane DSP
 - loosely coupled co-processor separate instruction stream
 - design time ARM+Optimode
 - run-time Xilinx, Altera
 - FPGA solution+embedded processor
- 2. As a flexible alternative to ASICs
 - Programmability "future proofs" the SOC
 - SOC decreases time-to-market thru reuse
 - SOC : 1 year design time
 - ASIC : 2.5 year design time
 - Using flexible-configurable logic enables further reduction in time-tomarket

Candidates for Configurable CPUs

Compute intensive inner loops or kernels


- inner loops identified and new instructions or coprocessor tailored to their efficient execution
- Examples of instructions:
 - a MAC instruction
 - for (i = 0; I < n; i++) sum = sum + a[i] * b[i];
 - add-compare-select
- Examples of co-processors
 - Fast Fourier Transform
 - Viterbi decoder

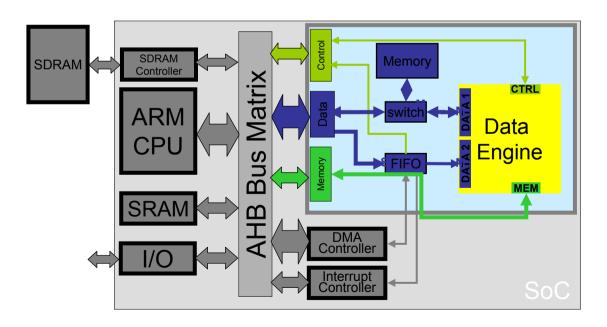
Tightly Coupled and Configurable at Design Time

Examples: Tensilica, ARC

- Customization added to a basic microprocessor base
- Typically the fetch unit, ALU, load/store unit and basic control units in the processor are fixed
- Configurable options
 - register file, additional execution Units except basic ALU
 - cache/memory type, size
 - debug support
 - interrupts, timers, peripherals
- New instructions/functionality added during design space exploration
- RTL code, compiler, instruction level full system simulation and the description of the architecture is generated
 - simulation studies allow performance/power calibration
 - EDA tools are later used to implement these configurable processors

Design Flow for Configurable Processors

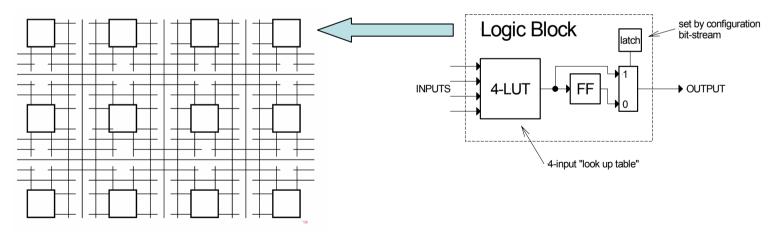
- The customizable processor can be optimized for the application in terms of
 - gate count
 - power consumption
 - performance


Tensilica figures compared to a general purpose 32-bit RISC Core (ARM or MIPS):

- 7x improvement on W-CDMA applications
- 50x improvement on MPEG4 QCIF
- 250x improvement on GSM Viterbi Decoding

Loosely Coupled and Configurable at Design Time

Example: Optimode+ARM


- Separate co-processor with own instruction stream
 - horizontally microcoded engine
- Design flow is geared to iteratively improve kernel performance
 - C-like description

Configurable at Run Time

Examples – FPGAs: Xilinx, Altera

- 2D array of logic blocks and flip-flops with configurable
 - interconnect between the logic blocks & their function
- Configuration stored in RAM
- Embedded hard cores
 - Multipliers
 - Processors: Xilinx 32-bit PowerPC; Altera 32-bit ARM
- Softcores
 - Processors: Xilinx 8-bit PicoBlaze, 32-bit MicroBlaze; Altera 32-bit Nios

- Development cycle is less integrated into an SOC flow
- Power a consideration