Specification and Validation for Heterogeneous MP-SoCs

Gabriela Nicolescu

Ecole Polytechnique de Montréal

Tel: (514) 340 4711 ext 5434

Fax: (514) 340 3240

Email: gabriela.nicolescu@polymtl.ca

Heterogeneous SoC

- Paradigm shift
- SoCs are drivers for several technologies integration
- Applications automotive, communications, medical, defense

New technologies for heterogeneous SoC

- > 3D System In Package Integration
 - Specific components are fabricated on individual wafers and then integrated onto a single chipscaled package
 - Benefits
 - Increased performance
 - Increased integration density
 - Reduced power consumption
 - Wireless communication schemes
 - Based on Capacitive coupling
 - Based on Inductive coupling
 - New system-level trade-off

Source: Balinga, Banerjee

Outlook for the design of heterogeneous SoC

- Access to physical prototyping for multitechnology SoCs is a major challenge
 - Significant cost
 - Harder to influence standard processes
- Modeling and simulation becomes a necessary alternative in design space exploration for these systems
 - Few existing approaches
 - More research needed

Heterogeneous SoC Specification & Validation

- Extensions of existing tools/languages
 - Homogeneous environment
 - Classical HDLs + AMS concepts + new features for sim scheduler
 - VHDL-AMS, Verilog-AMS, SystemC-AMS
 - No powerful libraries

Heterogeneous SoC Specification & Validation

- Heterogeneous Models of Computation (MoC)
 - Single formalism for representing different models
 - Deep conceptual understanding
 - Ptolemy [Lee], Rugby [Jantsch]

Heterogeneous SoC Specification & Validation

- Heterogeneous execution models
 - Multiple environments
 - Taking into account implementation aspects
 - Application specific efficient libraries
 - LEOM [O'Connors]
 - Pittsburgh [Levitan]
 - Global execution models
 - TIMA [Jerraya & Kriaa]
 - Ecole Polytech Montreal

 \longleftrightarrow

Interfaces for Execution Models Adaptation

Key Features for Next Specification & Validation Tools

- Homogeneous environment facilitating cooperation between different teams
 - Enabling easy specification, automatic generation for simulation interfaces
 - Taking into account implementation choices
 - Exploiting powerful existing tools (Simulink, SystemC, ...)
 - Based on a single well defined formalism for domain interaction

Heterogeneity example - Continuous vs. Discret -

Concept Model	Time	Communication means	Processes activation rules
Discrete	Advances discretely	Set of events	Processes are
	(constant intervals)		sensitive to events
Continuous	It advances by	Piecewise-	Processes are
	integration steps (IS)	Continuous signals	executed at each IS

Challenges for Accurate Global Execution

Detection of state events generated by the continuous simulator

- Detection of the next event of the discrete simulator (scheduled event)
- Detection of the end of the discrete simulation cycle and the time step sending

Generic Architecture for Continuous/Discrete Simulation

Generic Architecture for Continuous/Discrete Simulation

Cosimulation bus

First results

- Continuous/Discrete simulation -
- SystemC/Simulink accurate simulation
 - Easy integration, generic library elements

Performances analysis

- Inter-Simulators Communication overhead
 - 20% of the total simulation time
- Overhead caused by the Simulink integration step adjustment
 - max. 5% of total simulation time
- SystemC Synchronization overhead
 - max. 0.2% of the total simulation time

Conclusions

- SoC drivers for multi-technology integration
- New CAD tools for design exploration are required
 - Global specification and validation are important challenges
- First prototype for electro-mechanical systems
 - Continuous/discrete integration
 - Simulink and SystemC integration