
1

Parallel Programming Model for
Distributed Architecture MPSoC.

Prof. Yuriy Sheynin,
Director, Doctor of Science

190 000 St. Petersburg
Bolshaya Morskaya str., No 67

Fax: +7 812 3157778
E-mail: sheynin@online.ru

St. Petersburg State University of Aerospace Instrumentation
Institute for High-performance Computer and Network Technologies

2

Distributed Architecture MPSoC
Heterogeneous distributed scalable architectures
with coarse-grained cores are the trend in embedded
application specific MPSoC

Programming of coarse-grained heterogeneous
MPSoC remains a challenging task

It requires new parallel programming paradigms and
computational models for application specific
MPSoC -- Parallel Programming Model (PPM)

3

What is a Distributed Architecture?
Distributed control – a Computing Module (Node) has its
own independent local control (“program counter”)

Distributed memory – a local memory in Computing Module
(Node) with a separate address space.
No global address space

Message-passing interaction between Computing Modules
(Nodes)

It could be called Network Architecture also,
if it would not pull us too far into similarities with Internet …

4

Parallel Programming Model incorporates

Programmer’s vision of the Computing Platform :
– a generalized representation of the computer (Abstract

Machine) he is programming

Programmer’s vision of a Parallel Computation (principles of
operation and control)
– parallel computation paradigm and model

Programmer’s vision of Parallel Programming itself
– Parallel programming methodology and Parallel

programming language

5

Development of Abstract Machine (AM)
Parallel Computational Model (CM)

and Parallel Programming Language (PPL)
are interrelated tasks that require integral approach.

Abstract
Machine

(AM)

Computational
Model

Language

Program scheme rules of
operation

Semantics,
Unified Algorithm of the language

Components, features, rules of
operation for the AM

6

MPSoC as a platform for application-
specific parallel computations
MPSoC as a specific parallel computer is an entity for

implementation of co-operating processes.
Nature and features of systems of processes should define
concepts and approach for a computer design and
programming.

Core question:
What types of parallel computations
are generated by the application-specific MPSoC workload ?

Parallelism level and granularity

Fixed / Static / Dynamic

7

MPSoC Parallelism Levels
3 levels of MPSoC Parallelism:

Task-level parallelism (tlp)
To be used in:
• Parallel Algorithms development;
• Parallel source code programming;

Procedure-level parallelism (plp)
To be used in:
• Parallel source code programming;
• Source code translation and linking;
• Parallel program optimization;
• Parallel object code mapping to MPSoC PEs

MCA engines’ units parallelism (mup)
To be used in:
• Procedure program optimization and local parallelization;
• Multiple Procedure programs mapping to MPSoC PEs

``````



8

Static vs Dynamic parallel computations

Static computation
+ Low control overheads
+ Low  response time

- Excess MPSoC resources (PEs, 
memory, I/O) expenditure

- Excess power consumption
- Scheduling for maximum 

function processing time →
overrated processing time, 
underrated performance

- Problems of computation 
adaptation to varying tasks, 
MPSoC components faults

Dynamic computation
- Higher control overheads
- Higher  response time

+ Judicious MPSoC resources 
expenditure (memory, PEs)

+ Economical power consumption
+ Scheduling for actual function 

processing time → increased 
performance

+ Natural computation adaptation 
to varying tasks, to MPSoC 
components faults



9

Dynamic computations are parallel computations, 
which set of components and links between them 
depend on data values and change in the cause  of 
computation

A formal Parallel Computation Model that covers both 
static and dynamic parallel computations is required

Asynchronous Growing Processes (AGPAGP--modelmodel)
- dynamic parallel computation model, that covers 
static parallel computations as its particular cases

Rational parallel computations 
in application-specific MPSoCs

- a combination of static and dynamic computations



10

Parallel Programming Language semantics specification 

Parallel algorithms and programs optimization, verification and 
debugging 

Mapping parallel programs to distributed heterogeneous MPSoC 
structure

Tolerant control of distributed parallel computations in MPSoC

Methodology for balancing parallel software with MPSoC features 
and characteristics

Formal models are required for:



11

Asynchronous Growing Processes (AGP-models)
Schema – Partially-interpreted Schema - Program

General 
AGP-model
of parallel 

computations

Special  AGP-model
of parallel 

computations

Language of 
parallel Abstract 

Machine

Non-interpreted program 
scheme

Partially-interpreted program scheme

Fully-interpreted program scheme
= Program

Interpretation of control components in a program schema, restrictions on 
program scheme structure

Interpretation of all the components of a program scheme



12

AGP-model features and ideas (informally)
Parallel program scheme is represented by a directed graph. 
Vertexes represent operators and data-objects.

All interactions of processes are explicitly represented in the parallel 
program scheme. Processes interact through data-objects. 
Thus it can be controlled and verified at the level of parallel program scheme.

Data, which are accessed by several operators, are explicitly represented in 
parallel program scheme as data-objects.
Thus, data shared by several processes are in the frame of the model, 
as well as  buffered data between a pair of operators (like in data-flow graphs)

Control of computation in the AGP-model is defined in correspondence with 
MPSoC distributed architecture features.
Control is distributed, parallel and asynchronous. 
It helps to fill MPSoC resources with computations and to pull high-parallel 
computations through limited MPSoC resources.



13

AGP-model features and ideas (informally), 
continued

Parallel program scheme is transformed, in general, at  every computation step 
– Dynamic parallel computation. 
The graph itself is changing, not  only its marking (as in data-flow computations or 
Petri nets).

Alternative computation (if, case, etc.) can be implemented as generation of 
alternative parallel program scheme fragments, 
instead of routing data to one of data-flow branches, which simultaneously occupy 
resources. Thus we can save MPSoC resources and power consumption.

Static parallel computations can be represented as particular cases of dynamic 
computation. 
It gives a way to seamless integration of dynamic and static parallel computations in a 
single formal model. 



14

MPSoC Parallel programming concepts
We believe:

Programs and algorithms should be developed as parallel ones 
from the beginning.
Inherent parallelism of an application should be defined and 
extracted at user/application level

Parallel programming (with a right language and  right tools) is
not more complicated then sequential programming

Parallel program should be rather  made correct automatically 
(correct by construction, verification), than debugged

Sequential programs of processes should be absolutely 
encapsulated. No inter-process interaction directives inside a 
sequential program!



15

Splitting programming into 
• programming of a parallel program scheme and 
• programming  of interpretation of its nodes – operators and data-objects

Explicit programming of a parallel program scheme

Two levels of programming languages:
• new PPL for parallel computation scheme programming
• conventional programming languages (C, Embedded C) for sequential 

process programs.
It corresponds well to the coarse-grain functions in application-specific 

MPSoCs. 

Algorithmic completeness
– means for computations control in dependence of data values 
at the level of a parallel program scheme

MPSoC Parallel programming concepts



16

Visa 
-- Parallel Programming Language for parallel 
program schemes programming

The Visa language semantics is formally specified  in terms of the AGP-
model

Control operators are generators of program scheme fragments
Program control of a computation - through generation of different 
scheme fragments depending on data values. Dynamic and Static parallel 
computations unrolling. 

Visual (graphical) PPL for programming of a parallel program scheme. 
Parallel program scheme visual representation as a hierarchical diagram
Visa - Interactive language and visual programming tools
Scalable language. 
Standard operators (library functions) and user definable operator types 
and data types (user-written C code for functions )



17

Commented view

Dep
MCS

VitD
MCS

RC
MCS

coder type new burst

burst storage

Write
bad burst

to
storage

Bufer for new burstBufer of coding type

Branching depending on a
coding type (122)

Storage for a bad burst

Branching depending on
integrity burst (122)

Depuncturing for each
coding type (ex, 1011)

Redun.check and form array
for each coding type (ex, 1210)

Viterby decoder for each
coding type (ex, 1110)

If decoded data is bad - store
encoded block (210)

464 int (GMSK)
1392 int (8PSK)

23 / 29 / 38 / 45 char
1 char

196  /  244  / 316 / 372 char

588 / 732 / 948 / 1116 int

372 / 744 / 1116 int

372 / 744 int

1 char (flag)
372 int

4 char 372 int

122

MCS

new burst

1 char (flag)
372 int

A Visa program 
fragment Example



18

Conclusion
The Parallel Programming Model and the Visa PPLanguage give a way

To work with static and dynamic parallel computations in MPSoC, with 
their manageable integration in particular application software for 
MPSoC
To work with distributed memory paradigm (e.g. data-flow 
computations, message-passing) and with shared data
To represent different programming styles and paradigms (MIMD, data 
parallel, data flow) in the single Programming Model, thus – integrate 
them in one software system
To mate parallel scheme programming in new PPL with programming 
of its nodes in conventional programming languages 
To have manageable and adjustable granularity for application-specific 
MPSoC parallel computations.
To build correct-by-construction parallel programs 
or to verify parallel program properties
To reduce parallel program debugging to debugging of its sequential 
implementation



19

Conclusion
Research is going on to get all these fine features and 
properties for wider classes of  parallel software for MPSoC



20

Thank  you !


