
Foundations for Model-Based Design

Janos Sztipanovits
ISIS, Vanderbilt University
janos.sztipanovits@vanderbilt.edu

MPSOC 2005
Margaux, France
July 11, 2005

mailto:janos.sztipanovits@vanderbilt.edu

Content

• Introduction to model-based design
• System Composition Dimension

– Layers
– Approaches
– Languages

• Tool Composition Dimension
– Layers
– Building Tool Chains

• Metamodeling and Metaprogrammable
Tools

• Semantics

Goal and Approaches

• Building increasingly complex networked
systems from components
– Naïve “plug-and-play” approach does not work in

embedded systems (neither in larger non-
embedded systems)

– Model-based software design focuses on the
formal representation, composition, analysis and
manipulation of models during the design
process.

• Approaches with differences in focus and
details

– MDA: Model Driven Architecture
– MDD: Model-Driven Design
– MDE: Model-Driven Engineering
– MIC: Model-Integrated Computing

Two Dimensions of MIC
System Composition
(Product Models)
Heterogeneous
Distributed
Embedded
Layered

Composable
Integrated
Correct by construction

Tool Composition
(Design Process Models)

Customizable FrameworksSingle Tools Composition Frameworks

Rational
Rose

SL/SF

VS

UPAAL

ECLIPSE
TOOLS

ESCHER
TOOLS

www.escherinstitute.org

Content

• Introduction to model-based design
• System Composition Dimension

– Layers
– Approaches
– Languages

• Tool Composition Dimension
– Layers
– Building Tool Chains

• Metamodeling and Metaprogrammable
Tools

• Semantics

System Composition Dimension:
Core Modeling Aspects

Component Behavior

Structure

Interaction

Scheduling /
Resource Allocation

Modeled on different levels of abstraction:
• Transition systems (FSM, Time Automata, Cont.

Dynamics, Hybrid), fundamental role of time models
• Precise relationship among abstraction levels
• Research: dynamic/adaptive behavior

Expressed as a system topology :
• Module Interconnection (Nodes, Ports, Connections)
• Hierarchy
• Research: dynamic topology

Describes interaction patterns among components:
• Set of well-defined Models of Computations (MoC)

(SR, SDF, DE,…)
• Heterogeneous, but precisely defined interactions
• Research: interface theory (time, resources,..)

Mapping/deploying components on platforms:
• Dynamic Priority
• Behavior guarantees
• Research: composition of schedulers

Examples for Research Approaches

Component Behavior

Structure

Interaction

Scheduling /
Resource Allocation

Ptolemy II
(Lee, UCB)

Java Code/
Behavioral
Models

Hierarchical
Module
Interconnection

Heterogeneous
Models of
Computation

+
Directors

Metropolis
(ASV1, UCB)

Netlists (port,
interface,
connection)

IF
(Sifakis, Verimag)

Process
(Hierarchical
Timed
Automaton)

Dynamically
Created
Channels

Asynchronous
Interactions:
- P2P
- Unicast
- Multicast

Dynamic
Priorities

Process
(Hierarchical,
Active
Components)

Medium (port,
parameter,
useport)

Scheduler
(port,
parameter)

1 Alberto Sangiovanni-Vincentelli

Modeling Formalisms Are Different

Ptolemy II

Metropolis

IF

Emergence of Modeling
Language Standards

• SySML

• Others (UML-2; RT-UML, SLML, AADL,…)

Current Status of System/SW
Modeling Languages

• The number of new standards is growing driven
by competing consortiums and .org-s

• Intended scope ranges from “unified” to
“specific”.

• Many views them as programming languages
− Wait for the “Unified One” to ensure reusability of tools
− Slow down deployment because of the lack of standards
− Wait for executable models

• Modeling and analysis tools are not integratable
(closed camps emerge protected by a
“standard”).

• Semantics is largely neglected or left to
undocumented interpretations of tool
developers.

Trends in Modeling Languages

• Increasing acceptance of metamodeling and
Domain-Specific Modeling Languages based
on standard metamodels (Meta Object
Facility, MOF)

• Emergence of metaprogrammable tools
• Desire for solving the “semantics problem”
• Better understanding of the role of

precise model transformations in model-
based generators and in building domain-
specific tool chains from reusable tools

Content

• Introduction to model-based design
• System Composition Dimension

– Layers
– Approaches
– Languages

• Tool Composition Dimension
– Layers
– Building Tool Chains

• Metamodeling and Metaprogrammable
Tools

• Semantics

Tool Composition Dimension:
Core Modeling Aspects

doTransition (fsm as FSM, s as State, t
as Transition) =
require s.active
step exitState (s)
step if t.outputEvent <> null then

emitEvent (fsm, t.outputEvent)
step activateState (fsm, t.dst)

Semantic Foundation
Libraries

Domain-Specific
Environments

Metaprogrammable
Tools, Environments

Modeling Domain Specific Design Flows:
Examples in MIC:

• ECSL - Automotive
• ESML - Avionics
• SPML - Signal Processing
• CAPE/eLMS – Learning Technology

Metamodeling and Metaprogrammable Tools:
(mature or in maturation program)

• GME (Generic Model Editor)
• GReAT (Model Transformation)
• OTIF (Tool Integration Framework)
• UDM (Universal Data Model)
• DESERT (Design Space Exploration)
• GME-MOF/Meta (Metamodeling Env-s)

Modeling Semantics (work in progress):
• Semantic “Units”
• Semantic Anchoring

Interrelation with System
Composition

Component Behavior

Structure

Interaction

Scheduling /
Resource Allocation

Domain-Specific
Tools, Tool Chains

Metaprogrammable
Tools, Environments

Semantic Foundation;

- Set-Valued
Semantics

- State Automaton
- Timed Automaton
- Hybrid Automaton
- …

- Tagged Signal Model
- State Automaton
- Timed Automaton
- …

- Transition Systems
With Priority

Abstract Syntax
+

Semantic Anchoring

Abstract Syntax
+

Semantic Anchoring

Abstract Syntax
+

Semantic Anchoring

Abstract Syntax
+

Semantic Anchoring

Behavior
Modeling View

Structural
Modeling Views

Interaction
Modeling Views

Resource Access
Modeling Views

TOOLS

COMPOSITION PLATFORMS
METAPROGRAMMABLE TOOLS

Example Tool Chain:
Vehicle Control Platform (VCP)

Abstract Syntax and Transformations: Meta-Models
Common Semantic Domain: Hybrid Automata

Domain Models and Tool Interchange Formats: Tool Chains

DESERT

PTOLEMY

AIRES

OSEK/
Code

ECSL-DP
GME

Simulink
Stateflow

SL/SF
ECSL-DP

ECSL-DP
MOML

ECSL-
DP

AIF

S
L/S

F
D

S
E

E
D

PC

Vehicle Control Platform (VCP)

Behavior
Model

Component
Structure

Component
Interaction

Schedulability
Analysis

Behavior
Simulation

Constructing Tool Chains:
Modeling and Transformations

ECSL-DP
GME

SL/SF
ECSL-DP

Simulink
StateFlow

S
L/SF
D

S
E

Domain Models and Tool Interchange Formats

SC

A

MC2 MS2

DSML-2CS

A

MC1 MS1

DSML-1
Transformation

T
- Large influence of

concrete syntax
- No clear role of

semantics
- It is not clear what are

we doing?

Simulink
StateFlow

ECSL-DP
GME

DSML1DM DSML2DM

Content

• Introduction to model-based design
• System Composition Dimension

– Layers
– Approaches
– Languages

• Tool Composition Dimension
– Layers
– Building Tool Chains

• Metamodeling and Metaprogrammable
Tools

• Semantics

Metamodeling Layer Objectives

Semantic Domain:
Set-Valued

Domain models
Interchange Formats

Abstract Syntax
Meta-models

MC

MS

interface Event
structure ModelEvent
implements Event
case ModelEvent1

Structural Semantics

• Metamodeling
• Model Data Management
• Model Transformation
• Tool Integration

Metamodeling and Domain Specific
Modeling Languages

Domain Specific Modeling Language (DSML)

Semantic
Domain

S

Abstract
Syntax

A

Concrete
Syntax

C
Parsing

Semantic
Mapping

Concepts
Relations
Well formed-ness
rules

Mathematical
abstraction for
specifying the
meaning of models

Notation for
representing models

L = < C, A, S, MS, MC>

MS

MC

• Model: precise representation
of artifacts in a modeling language L

• Modeling language: defined by
the notation (C), concepts/relations
and integrity constraints (A), the
semantic domain (S) and mapping
among these.

• Metamodel: formal (i.e. precise)
representation of the modeling
language L using a metamodeling
language LM.

Modeling Example:
Metamodel and Models

Metamodel:
- Defines the set of
admissible models

- “Metaprogramms” tool

Model:
- Describes states and transitions
- Modeling tool enforces constraints

Metaprogrammable
Modeling Tool: GME

– Configuration through UML and OCL-based metamodels
– Extensible architecture through COM
– Multiple standard backend support (ODBC, XML)
– Multiple language support: C++, VB, Python, Java, C#

Decorator Decorator

GModel GMeta

CORE

MetamodelXML

Paradigm Definition

Storage Options… DB #nDB #1 XML …

UML / OCL

COM

COMCOM

XML

XML

ODBC

Constraint
ManagerBrowser

Translator(s)Add-On(s)

GME Editor

GME Architecture

Model Data Management:
The UDM Goals

• To have a conceptual view of data/metadata
that is independent of the storage format.

• Such a conceptual view should be based on
standards such as UML.

• Have uniform access to data/metadata such
that storage formats can be changed seamlessly
at either design time or run time.

• Generate a metadata/paradigm specific API to
access a particular class of data.

Model Data Management:
The UDM Tool Suite

GME UML

GME/UML
Interpreter

UDM.exe
XML
(Meta)

<Uml.xsd>

.cpp .h .xsd

User Program

UDM Generated code

API Meta-
objects

XML data
file

Validates

UdmCopy

XML MEM MGA

GME

Backends

Binary
file

CORBA

Network

Generic API
OCL
Eval

Model Transformation:
The “Workhorse” of MIC

MDSML1,DSML2

MOFADSML1 MOFADSML2MTLTDSML1,DSM2

MOF UMT MOF

M12: MOFADSML1→MOFADSML2

SC

A

MC2 MS2

DSML-2CS

A

MC1 MS1

DSML-1

DSML1DM DSML2DM

Transformation
T

Rewrite
EngineInput

Models
Target
Models

Ph
ys

ic
al

 in
te

rf
ac

e

Ph
ys

ic
al

 in
te

rf
ac

e

In
pu

t
ab

st
ra

ct
 s

yn
ta

x

O
ut

pu
t

ab
st

ra
ct

 s
yn

ta
x

Input
Interface

Output InterfaceA
P
I

A
P
I

UDMUDM

GReATGReAT

Metamodel of
Input

Metamodel of
Output

Metamodel of
Transformatio

n

M
et

a-
le

ve
l:

Tr
an

sl
at

or

de
si

gn
Im

pl
em

en
ta

tio
n:

Ex

ec
ut

io
n

Relevant Use of Model Transformations:
• Building integrated models by extracting
information from separate model
databases

• Generating models for simulation and
analysis tools

• Defining semantics for DSML-s

MIC Model transformation technology is:
• Based on graph transformation

semantics
• Model transformations are specified
using metamodels and the code is
automatically generated from the
models.

Model Transformation:
The GReAT Tool Suite

MetaModel of Source

Source Models

Meta-Programmable
Modeling Tool

MetaModel of Target

MetaModel of
Domain-to-Target

Mapping

Meta-Programmable
Transformation Tool

Code Generator

(Generated)
Transformation Tool

Debugger

Target/Executable
Models

Target Platform

Meta-models

Meta-
programmable

tools

Models and
applications

Generated tool

uses uses

describes

describes

configures

creates

configures

generates GRE

DEBUG

C/G

Tools: UMT Language, GRE (engine), C/G, GR-DEBUGTools: UMT Language, GRE (engine), C/G, GR-DEBUG

GME

Open Tool Integration
Framework: OTIF

BACKPLANE
REGISTRATION/NOTIFICATION/TRANSFER SERVICES

SEMANTIC
TRANSLATOR

SEMANTIC
TRANSLATOR

TOOL

TOOL
ADAPTOR

TOOL

TOOL
ADAPTOR

TOOL

TOOL
ADAPTOR MANAGER

Standard interface/
Protocol

METADATA

Karsai, ISIS-Vanderbilt

• Share models using Publish/Subscribe Metaphor
• Status:

– Completed, tested in several tool chains
– Protocols in OMG/CORBA
– CORBA as a transport layer
– Integration with ECLIPSE is in progress

• Share models using Publish/Subscribe Metaphor
• Status:

– Completed, tested in several tool chains
– Protocols in OMG/CORBA
– CORBA as a transport layer
– Integration with ECLIPSE is in progress

RFP is Discussed at
MIC PSIG
OMG

http://www.isis.vanderbilt.edu/Projects/WOTIF/default.html

MIC Metaprogrammable Tool Suite

Generic Model Editor
GME

UDMPersistency
Service
• Database
• XML
• C++ API

GReAT Analysis
Tools
• Simulators
• Verifiers
• Model Checkers

DESERT

Meta
Language

Component
Abstraction (TA)

Design Space
Modeling (MD)

Design Space
Encoding (TE)

Design Space
Pruning

Design
Decoding

Component
Reconstruction

Model TransformationUnified Data Model

GME, UDM, GREAT, DESERT
Completed tool suite, available
through the ESCHER Quality Controlled Repository:
http://escher.isis.vanderbilt.edu

OTIF

Design Space Exploration

“Backplane View” of the
VCP Tool Chain

Common Semantic Domain: Hybrid Automata

Domain Models and Tool Interchange Formats: Tool Chains

DESERT

PTOLEMY

AIRES

OSEK/
Code

ECSL-DP
GME

Simulink
Stateflow

SL/SF
ECSL-DP

ECSL-DP
MOML

ECSL-
DP

AIF

S
L/S

F
D

S
E

E
D

PC

Vehicle Control Platform (VCP)

Abstract Syntax and Transformations: Meta-Models

SL/SF
Meta-Model

ECSL-DP
Meta-Model

AIRES
Meta-Model

PTOLEMY
(MOML)

DESERT
Meta-Model

SFC
Meta-Model

ECSL-DP
SFC

SL/SF
ECSL-DP

ECSL-DP
MOML

ECSL-DP
AIF

SL/SF
DESERT

Content

• Introduction to model-based design
• System Composition Dimension

– Layers
– Approaches
– Languages

• Tool Composition Dimension
– Layers
– Building Tool Chains

• Metamodeling and Metaprogrammable
Tools

• Semantics

doTransition (fsm as
FSM, s
as State, t as
Transition) =

Semantic Domain
Meta-models

Domain models
Interchange Formats

Abstract Syntax
Meta-models

MC

MS

SC

A

MC2 MS2

DSML-2CS

A

MC1 MS1

DSML-1

DSML1DM DSML2DM

Transformation
T

MS1= MS2○ M12

MDSML1,DSML2

MOFADSML1 MOFADSML2MTLTDSML1,DSM2

MOF MTL MOF

M12: MOFADSML1→MOFADSML2

MS2: ADSML2→S

MS1: ADSML1→S?

Behavioral Semantics

How About Semantics?

Transformational Specification of Behavioral Semantics

MDSMLi,SU

SC

A

MC2 MSU

SUCS

A

MC1 MSi

DSML-i

MOFADSMLi MOFASUMTLTDSMLi,SU

MOF MTL MOF

Mi: MOFADSMLi→MOFASU

Transformation
T

MSU: ASU→S

MSi= MSU ○Mi Semantic “Units”DSML-i

doTransition (fsm as
FSM, s
as State, t as
Transition) =

Semantic Domain
Meta-models

Domain models
Interchange Formats

Abstract Syntax
Meta-models

MC

MS

Semantic Anchoring of DSML-s

-The “Semantic Units” are
selected common semantics
such as MoC-s

-DSML-s or their aspects
are anchored to the
common semantics using
transformations

-The “Semantic Units” are
specified in a formal
framework

Semantic Anchoring

Semantic Anchoring Infrastructure

• Semantic Unit
– A well-defined operational semantics for core Models of

Computation and Behaviors (e.g. FSM).
• Semantic Anchoring

– Define the semantics a DSML through specifying the
transformation specification to a semantic unit.

AsmL Behavioral
Semantic Spec

Transformational
Specification

Translator
Engine

DSML
Metamodel

GME GME
ToolsetToolset

GReAT ToolGReAT Tool

Model
Checker

Model
Simulator

Test Case
GeneratorMc

XML
Parser

AsmL Spec AsmL ToolsAsmL Tools

InstanceGenerate

AsmL
Metamodel

AsmL Model
(XML Format)

AsmL
Data Model

Domain Model

SC

A

MC MS

MMM

MOFASU

MOF

MS3: MOFADSML1→MOFASU

MS: ASU→S

Common Semantic Domain
Simulator

MTL

Transformation
T1

MS1= MDSML1,SU○ MS

CS

A

MC1 MS1

DSML-1

MOFADSML1

MOF

DSML-1

MDSML1,SU

MTLTDSML1,SU

DSML1DM

SC

A

MS2 MC2

DSML-2

MOFADSML2

MOF

DSML-2

MTL

Transformation
T2

MSU,DSML2

MTLTSU,DSML2

DSML2DM

Semantic Integration of Tools

Analysis ToolModeling Tool

MS= MSU, DSML2○ MS2

T1 T2

Obligation of DSML
Developer

Obligation of Tool
Developer

Summary

• “Plug-and-Play” component technology is not
sufficient for embedded software of non-
trivial size

• Model-based design addresses core issues:
it integrates systems and software
engineering

• Active research programs in system and
tool chain composition have made
significant progress in the past five years

• New frontier: explicit semantics

FSM Metamodel

FSM Model

Metamodel for AsmL Abstract
Data Model

AsmL Abstract Data Model

Abstract
Model

AsmL Behavioral Semantic
Specifications

Behavior in
Terms of
Abstract
Model

Transformational Specifications

AsmL Data Model in XML Format

AsmL Data Model

Instance of the
Abstract
Model

	Foundations for Model-Based Design
	Content
	Goal and Approaches
	Two Dimensions of MIC
	Content
	System Composition Dimension: Core Modeling Aspects
	Examples for Research Approaches
	Modeling Formalisms Are Different
	Emergence of Modeling Language Standards
	Current Status of System/SW Modeling Languages
	Trends in Modeling Languages
	Content
	Tool Composition Dimension:Core Modeling Aspects
	Interrelation with System Composition
	Example Tool Chain:Vehicle Control Platform (VCP)
	Constructing Tool Chains: Modeling and Transformations
	Content
	Metamodeling Layer Objectives
	Metamodeling and Domain Specific Modeling Languages
	Modeling Example: Metamodel and Models
	Metaprogrammable Modeling Tool: GME
	Model Data Management:The UDM Goals
	Model Data Management:The UDM Tool Suite
	Model Transformation:The “Workhorse” of MIC
	Model Transformation:The GReAT Tool Suite
	Open Tool Integration Framework: OTIF
	MIC Metaprogrammable Tool Suite
	“Backplane View” of the VCP Tool Chain
	Content
	How About Semantics?
	Semantic Anchoring
	Semantic Anchoring Infrastructure
	Semantic Integration of Tools
	Summary
	FSM Metamodel
	FSM Model
	Metamodel for AsmL Abstract Data Model
	AsmL Abstract Data Model
	AsmL Behavioral Semantic Specifications
	Transformational Specifications
	AsmL Data Model in XML Format
	AsmL Data Model

