Software-Centric System-Level Design

MPSoC'OS Tutorial

Software-Centric
System-Level Design

11-July-2005
Hiroaki Takada

Graduate School of Information Science, Nagoya Univ.

Chairman, TOPPERS Project
Email: hiro@ertl.jp URL: http://www.ertl.jp/~hiro/

Hiroaki Takada

Software-Centric System-Level Design

Self Introduction

Major Research Topics

» RTOS for Embedded Systems

» Real-time Scheduling and Analysis

» Embedded Software Development Environments
-} software researcher (basically)

» System-Level Design (started in 5 years ago)

» Automotive Control Systems

TOPPERS Project http://www.toppers.jp/ T,
» A project to develop various open-source .
software for embedded systems including
ITRON and OSEK-conformant RTOS. TOrRim

» RTOS for function-distributed multiprocessors
(FDMP) is one of the recent results.

Hiroaki Takada

Software-Centric System-Level Design
- 00000000000

Agenda

» HW Engineers vs. SW Engineers

» “System-Level Design”

> Practical Flow of System-Level Design
» SW-side Expectations on SLD

» SystemBuilder — A SW-Centric SLD Environment
» Design Flow, System Description

» HW/SW Partitioning, Implementation Synthesis
» Design Example, Multiprocessor Extension

» HW-Centric and SW-Centric Approaches to SLD

» Interface Description with Higher Abstraction

| This material will be put on the following URL.
http:/ /www.ertl.jp/~hiro/tmp/mpsoc05.pdf

]
Hiroaki Takada

Software-Centric System-Level Design
- 00000000000

HW Engineers vs. SW Engineers
| Difficulties of communication between HW engineers

and SW engineers is a serious obstacle for deciding
appropriate HW /SW partitioning and interface.

Causes of Communication Difficulties

» Terminology is different eg) “test” vs. “verification”
» What is designed is different (by definition!)
» Major design concern is different

» HW engineers ... performance (cost-performance)
+ uncertainty of physical phenomena

>» SW engineers ... complexity
—» design productivity

= One does not understand the other's problem.

Hiroaki Takada

Software-Centric System-Level Design

“System-Level Design”

What is “System?”
» HW engineers and SW engineers grasp “system”
differently because they design different things.
» A test to distinguish HW and SW engineers:
“Draw a system diagram of mobile phone.”
=) A system is the whole figure one can see!?

What is “Specification?”
>» SW engineers’ naive question on SpecC:
“Though C language is to describe an implemen-
tation, why SpecC is for specification?”
I SW engineers's impl. can be a spec. of HW engineers.
=) A specification is the description before one starts
his design work!?

Hiroaki Takada

Software-Centric System-Level Design

Practical Flow of System-Level Design (SLD)

|P Database
» Software IP

@gn Pa@ » Hardware IP

hardware

system-level design
* model ’ description \
description software N
(UML, \ impl.
block diagram) functions clearly » software ’
implemented in SW design -
requirement | | detail design verlflcat_lon,
analysis, architecture design, .’ validation
functional performance estimation Implementation

design

Hiroaki Takada

Software-Centric System-Level Design

Practical Flow of System-Level Design (SLD)

|P Database
» Software IP

@gn Pa@ » Hardware IP
\ / § Soope ot

hardware r eSearch

system-level design
* model ’ description
description software N
(UML, \ impl.
block diagram) functions clearly » software ’
implemented in SW design -
requirement | | detail design verlflcat_lon,
analysis, architecture design, .’ validation
functional performance estimation Implementation

design

Hiroaki Takada

Software-Centric System-Level Design
- 00000000000

SW-side Expectations on SLD

SLD for Design Productivity

» Describing hardware (or device) and software that
directly handles it (or device driver) in one language
can improve design productivity.

» Automatic synthesis of implementation (HW,
SW, and interface between them) from system-
level description is preferable.

» Even if the synthesis is difficult, system-level
description is useful as the interface description
between HW and SW.

| Hard-to-understand device manual is a major
source of misunderstanding between HW design
and SW design.

]
Hiroaki Takada

Software-Centric System-Level Design
- 00000000000

SW-side Expectations on SLD (cont.)

Abstraction of HW/SW Interface Design

» With automatic HW/SW interface synthesis, the
abstraction level of HW/SW interface design can be
raised.

» Detail structure of device registers are not
important for design and should be determined
by a synthesis tool.

» Bus interfaces should be registered as IPs and
an appropriate one should be selected.

| Bus is most important factor in HW /SW interface
design for HW engineers, but is not appeared in
“system” diagrams of SW engineers!

]
Hiroaki Takada

Software-Centric System-Level Design
- 00000000000

SystemBuilder — A SW-Centric SLD Environment

» SystemBuilder is a SW-centric system-level design
environment developed by our laboratory.
Main Features
» System-level description in C language
>» SW/HW partitioning by human designers
» Generation of software running on RTOS

» Automatic behavioral synthesis with a commercial
tool

» Automatic SW/HW interface synthesis

» Both uniprocessor and multiprocessor supported

» SW/RTOS/HW cosimulation at various abstraction
levels

» FPGA implementation

]
Hiroaki Takada

Software-Centric System-Level Design
- 00000000000

SystemBuilder (cont.)

Design Flow
» HW and SW described with
a system-level language

» Behavioral verification of
the system-level description

» Implementation synthesized
by the tool with designated
HW /SW partitioning
(architecture)

» Performance estimation of
the implementation

» Repeat the process if the
performance is insufficient

(1) system-level description

(2) behavioral verification

(3) designate architecture

(4) implementation synthesis
(4a) SW (4b) HW
(4c) HW/SW interface

(5) performance estimation

(6) tuning

uonnadal 3snf appNnonf

Hiroaki Takada

Software-Centric System-Level Design

System Description in SystemBuilder

» A system is described as a set of function units and
communication channels among them.

Function Units (FU)
>» Unit of concurrent execution || F1
» Unit of HW/SW partitioning
» SW: task or thread \
» HW: module or behavior @

Communication Primitives (CP) v
» Non-Blocking Communica- FU4 <—
tion (NBC) or Register

» Blocking Communication
(BC) or FIFO

>» Memory (MEM)

Hiroaki Takada

Software-Centric System-Level Design
- 00000000000

System Description in SystemBuilder (cont.)

System Description Language

» Each FU is described in normal ANSI-C language as
a function including an infinite loop.

» C-based language is preferable for SW engineers.

» Some extensions to C language are preferable
but are not MUST.

» We started with SpecC, but gave up because no
behavioral synthesis tool is available.

» I don't think SystemC suitable for SW engineers
(I don't like it, at least).

» Specification of CPs and how FUs and CPs are
connected are described with a simple script in a

system definition file (SDF).

]
Hiroaki Takada

Software-Centric System-Level Design

System Description in SystemBuilder (cont.)

An SDF Example

SYS NAME
SW = FU1,
HW = FU2,

BCPRIM
BCPRIM
NBCPRIM
MEMPRIM
NBCPRIM

BEGIN FU
NAME =
FILE
USE_CP

END

= test
FU4
FU3

SIZE =
SIZE
SIZE
SIZE
SIZE =

cpl,
cp2,
cp3,
cp4,
cp5,

FUl
"ful.c"
cpl(OUT),
cp3(0UT),
cp5 (INOUT)

32
32
32
32
16

BEGIN_FU
NAME
FILE

= FU2

USE _CP =

END

BEGIN FU
NAME
FILE

"fu2.c"
cpl(IN),
cp4 (0UT),

= FU3

USE CP =

END

BEGIN_ FU
NAME
FILE

"fu3d.c"
cp2(0UT),
cp4 (IN),

= FU4

USE CP =

END

"fud.c"
cp2(IN),

cp5 (IN)

cp5 (INOUT)

cp3(IN)

Hiroaki Takada

Software-Centric System-Level Design

HW/SW Partitioning in SystemBuilder

» System designer designates HW/SW partitioning in
SDF as below.

SW = FU1, FU4 SW = FU1
HW = FU2, FU3 HW = FU2, FU3, FU4
[Software) [Hardware | [Software /' Hardware

FU1

FU4

.

.

Hiroaki Takada

Software-Centric System-Level Design

Implementation Synthesis in SystemBuilder

» Behavioral synthesis with a commercial tool.

» Interface synthesis between FUs with our tool.

» RTOS and BUS IF is
registered as IPs (not
synthesized).

(Software) (Hardware)

s

FUA

Behavioral synthesis

Processor PE

01 G0 MR

(Device Drivers) (Device Registers)
(RTos)| | BuslF)

(—= f—

Bus

Hiroaki Takada

Software-Centric System-Level Design

Design Example with SystemBuilder

JPEG Decoder Example

» JPEG decoder is described with 5 FUs as below.

File Inverse Color Space
Format _»I:I)-Ieu;forgﬁln —> Quanti- |—» Ine)/gr_?e | Conversion —» BS{S
Analysis 9 zation (YUV->RGB)

>» Implemented on FPGA
with soft-core processor.

» Performance estimation
of about 10 HW/SW
partitionings are shown
on the right graph.

I Estimation can be done
in several hours.

Decode Time [msec]

Hiroaki Takada

16000

14000 |

12000

10000 |

8000 1

6000 |

4000 |

2000 |

00 1000 2000 3000 4000 5000 6000
Area [No. of Slices]

Software-Centric System-Level Design

Multiprocessor Extension of SystemBuilder

» FUs implemented in SW can now be assigned to
different processors.

Software on

Processori |

7

" Hardware |

Vs

FU1

<-

\

Software on

S

Processor2

SW(Processor1) = FU1
SW(Processor2) = FU4
HW = FU2, FU3

Processor1 Processor2 PE

)
FU1 {FUZ] {FUS]

(Device Registers)

(

FDMP-RTOS) || (__ BuslF)

g = i

Bus

Hiroaki Takada

Software-Centric System-Level Design

|
Multiprocessor Extension of SystemBuilder (cont.)

Performance Estimation of JPEG Decoder Example
» Implemented on FPGA with 2 soft-core processors.
> Performance estimation of about 10 configurations.
! Again, estimation can be done in several hours.

16000 |
= 14000 ‘. ¢ uniprocessor
é 12000 . o, = multiprocessor
[—" | |
@ 10000 [¢
g on
= 8000 f
o *
'8 6000 & L
(&) ¢ mm
O 4000 | "
a ¢ |
2000 |

O 4000 2000 3000 4000 5000 6000 7000 8000 9000
Area [No. of Slices]

]
Hiroaki Takada

Software-Centric System-Level Design

HW-Centric and SW-Centric Approaches to SLD

starting point is similar

FU1
processor ..,
[+software}_>
HW.centricy, ~SE - SE,
approach 3T 3T
FU4
processor}"
+software
difference +RTOS
approach t ...
Processor PE
[Fm} [FU4J [FUZ] [FUS] +MP i ideal SLD
(Device Drivers) (Device Registers) ﬁ . \
Cros 5| | C BrE + ... Eenvlronments!?
< i Bus — j’> e

Hiroaki Takada

Software-Centric System-Level Design
- 00000000000

Current and Future Work on SystemBuilder

Evaluations
» The effectiveness of SystemBuilder is now under
evaluations by some companies.
Further Extensions

» Wider space for architecture explorations.

» (HW /SW) interface description with higher
abstraction and interface synthesis from it.

>» HW/SW cosimulation environment supporting
multiprocessors.

> Profiling of system-level description.

]
Hiroaki Takada

Software-Centric System-Level Design

Interface Description with Higher Abstraction

Goal

» Interface description in the system level (behavioral
level) should be independent of architecture.

4

» System-level description should not be modified
during architecture exploration phase to facilitate
explorations.

Problem of the Current Method

» Current method does not achieve this goal, because
abstraction level of interface description is still low.

]
Hiroaki Takada

Software-Centric System-Level Design

Interface Description with Higher Abstraction (cont.)

Example:
» FU1 produces and writes large data on CP1.
» FU2 reads and consumes it.

FU1 write { CP1 read FU2

» CP1 is basically a FIFO.
» The simple UNIX-like write/read APIs are not
solution.
» Those APIs write/read the whole data at once.
» They require local buffers both in FU1 and FU2
in addition to a buffer in CP1 resulting in large
overhead and large memory consumption.

Hiroaki Takada

Software-Centric System-Level Design

Interface Description with Higher Abstraction (cont.)

Two Typical Implementations
» Double buffer

shared memory

~

buffer1 FU2
] (HW)

L buffer2/
» Local buffers + DMA transfer

local memory for FU1
} DMA transfer

read

FU2
[(HW)
read

local memory for FU2

Hiroaki Takada

Software-Centric System-Level Design
- 00000000000

Interface Description with Higher Abstraction (cont.)

Goal (in this Example)
» Because which implementation is appropriate
depends on various factors, the decision should be
done through architecture explorations.

» In system-level description, both implementations
should be synthesized from the same interface
description.

Problem of the Current Method (in this Example)
>» Memories, registers, and FIFOs must be explicitly
described with the current method.
» Therefore, the interface description determines the
implementation.

]
Hiroaki Takada

Software-Centric System-Level Design
- 00000000000

Interface Description with Higher Abstraction (cont.)

Approach
» Interface description with higher abstraction.
> Buffer handling should be explicitly described.

FU1 FU2
get an empty buffer; get a buffer filled with
write data to the buffer; received data;
(in arbitrary order) read data_from the buffer;
send the buffer; (in arbitrary order)
release the buffer;

» The following proposal is a good starting point.

» Pieter van der Woll, et. al: Design and Programming
of Embedded Multiprocessors: An Interface-Centric
Approach, CODES/ISSS2004.

]
Hiroaki Takada

Software-Centric System-Level Design
- 00000000000

Interface Description with Higher Abstraction (cont.)

Synthesis of Double Buffer

FU1 get an empty one of the
get an empty buffer; —+» qouble buffers. wait if no
write data to the buffer; empty buffer exists.

(in arbitrary order)
notify FU2 that the buffer

send the buffer; >
& is filled.
FU2
get a buffer filled with get an filled one of the

received data; > double buffers. wait if
read data from the buffer; no filled buffer exists.
(in arbitrary order)

release the buffer; , notity FU1 that the

buffer is empty.

]
Hiroaki Takada

Software-Centric System-Level Design
- 00000000000

Interface Description with Higher Abstraction (cont.)

Synthesis of Local Buffers + DMA Transfer

FU1

get an empty buffer; ——p get the local buffer of FUL.
write data to the buffer;

(in arbitrary order) wait for FU2 to release the
send the buffer; » buffer and start DMA
transfer.
FU2
get a buffer filled with wait for the completion

received data: | of DMA transfer and get
read data from the buffer; | the local bufter of FU2.

’ bit d
release(ltrillg ;otzﬂrr;l:y oreen notify FU1 that the
’ buffer is released.

]
Hiroaki Takada

Software-Centric System-Level Design
- 00000000000

Interface Description with Higher Abstraction (cont.)

Our Current Work

» We are defining communication primitives and APIs
with higher abstraction.

» We are investigating how to synthesize interface
implementation from them and developing a
synthesis tool.

Difficulty Encountered

» Existing behavioral synthesis tool is not sufficient
for elegantly synthesizing such interfaces.

Future Direction: Standardization?
» Standardization of system-level interface primitives
and APIs is effective to make FUs reusable to other

SLD environments.

]
Hiroaki Takada

Software-Centric System-Level Design
- 00000000000

Concluding Remarks

» HW engineers' and SW engineers' expectations on
SLD are far apart.

» Most SLD environments currently available are
based on HW-centric approach. They do not satisfy
the SW-side expectations on SLD.

» We are developing a SW-centric SLD environment,
named SystemBuilder.

» I hope adopting the results of both HW-centric and
HW-centric approaches leads to a more practical
SLD environment.

» Necessity of interface description with higher
abstraction is discussed.

]
Hiroaki Takada

