

New challenges in Smart Card design

120

July 13th , 2005

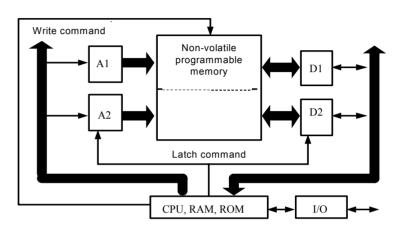
MPSOC 05 Margaux Jean-Pierre Tual

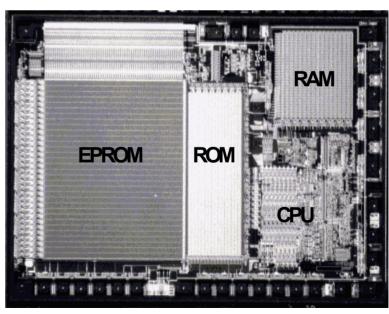
Agenda

- Smart-card key concepts
- Smart card design methodology short story
- Key trends in smart cards environment
- What needs to be addressed by the Smart Card industry
- HW evolution and challenges
- SW evolution and challenges
- Some more global concerns
- Conclusions

Smart card key concepts

Autonomous computer


- SPOM architecture
- CPU check of all logic/electrical signals before sending them to NVM


Trusted Personal Device

- Guards privacy
 - Tamper resistance
 - No information disclosure during communication
- Does exactly what is expected
 - Certification
 - User interaction and control
- Refuses to perform what illegal users expect it to do

Portability/Usability

- Small footprint
 - 20-25 mm2 max for classical plastic embedding
- Low cost
- User customizability

Smart card design methodologies short story

Heroic times (1979 circa 1990)

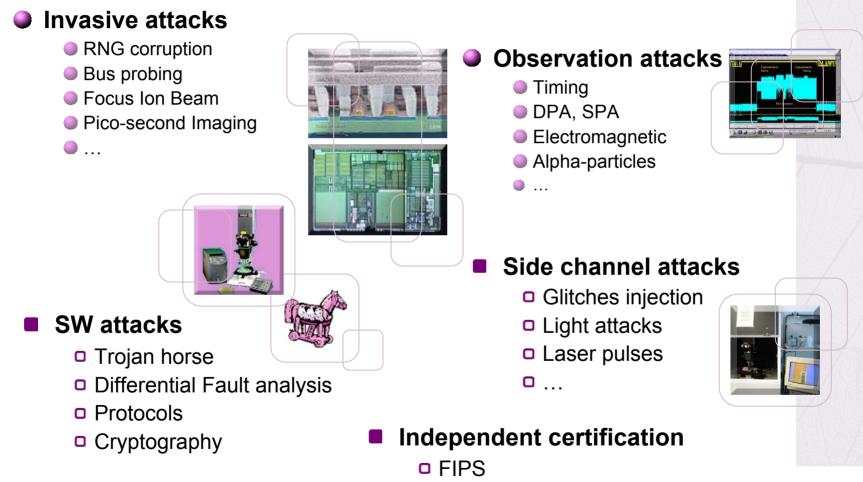
- HW : "recycled" 4-8 bit µProcessors from other industrial applications re-enforced by ad-hoc measures
- SW: low-level assembly code, intermixing basic OS and applications
- Security paradigm: Security by obscurity-ad-hoc measures

Early productivity times (1990-1996)

- HW: dedicated 8 bit µProcessors with powerful security mechanisms (sensors, crypto accelerators)
- SW: development of a new level programming paradigms with clearer cut OS applications-Partial introduction of high-level languages for card programming
- Security paradigm: Industrial application of formal security certification

Industrial times (1996-2002)

- HW: smart-card industry to embark on Moore's law- 16 bit/32 bit µProcessors appearing in the landscape. NMV doubling about every 18 Months
- SW: new shift of smart-card SW paradigm with JavaCard and later .net RTEs
- Security paradigm: Common Criteria with large public exposure of security stakes, requirements and threats


- Interoperable multi-application Citizenship or Governmental applications
- Secure/seamless payment of goods over the internet, mobile or multimedia networks
- Airport, seaports and large mass-transit area security solutions
- Premium Multimedia services over Mobile Networks (CAS for Pay-TV)
- Protection/development of eEuropean content industry through the deployment of secure DRM solutions
- Interactive, high-speed, multimode, multi-standard service roaming
- Highly secure intranet or extranet applications
- Home network and ambient intelligence

No more selling KB's of memory but value !! \Rightarrow Existing design paradigms not sustainable in the long term!

The key role of security

Over 25 years of race between designers and hackers on HW/SW protection

Common Criteria

What needs to be addressed by the Smart-card industry

Homogeneous evolution of

- CPU architecture
- Internal memory architecture and Secondary Storage
- Communication bandwidth and Multiplicity of supported interfaces

Evolution of SW design paradigms

- Openness of programming interfaces: High-level RTE, standard communication stacks
- Embedded SW internal architecture and design flow
- Richer OS capabilities, Real Time, Multi-thread, Multi Application, Power-aware
- SW validation and test: formal techniques, automation

Security management

- From security to TRUST (HW/SW cooperation, incorporation of privacy)
- Fast certification granting, maintaining and updating cycle times

HW/SW co-design

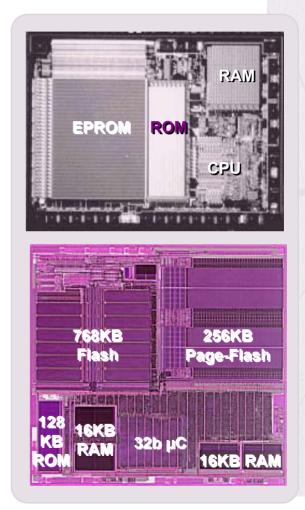
- Incorporate best practices from embedded system world (productivity)
- Export best-practices to secure embedded system world (Return On Investment)
- Develop trust-constrained HW/SW design flows

Design Environment "invariants"

- Cost
- Security and "out of spec" stressing
- Constrained resources

CPU evolution- tremendous progress made by the industry

From 1981...


- First industrial Spom (SC μP)
- RAM: 36B, ROM: 1,6 KB, EPROM: 1 KB
- NMOS 3,5 µ- 42 K-transistors
- 600 lines of embedded assembly code

…To 2005

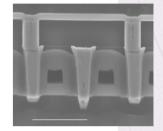
- New generation of smart-card IC's
- RAM: 16KB, 1MB Flash, 128 K ROM
- Full 32 bit architecture
- ACL memory protection
- CMOS 0,18µ over 1,5 M transistors
- Embryonic "MPSOC": dedicated crypto-processor
- 300 K-lines of embedded C-code
- .NET Web services enabled framework

What are the next challenges?

- New internal communication schemes for new applications
- Powerful memory protection schemes
- More and more dedicated "co-processors": crypto, biometry,RTE accelerators
- Multiple protocols support (USB, NFC, SPI, UWB?....)
- Memory stacking, external memory support

Internal Memory architecture

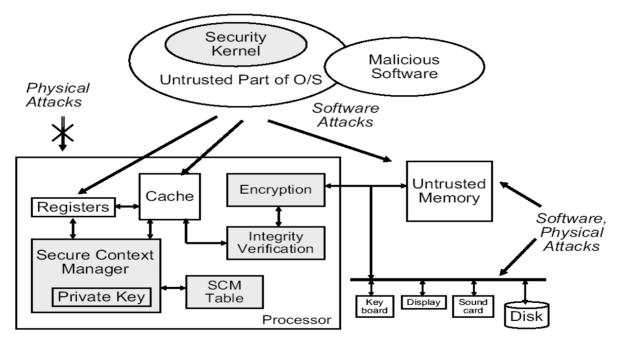
- EEPROM not sustainable on long term (cost, shrink-ability)
- RAM will remain a rare and costly resource


Alternative choices for NVM

	EEPROM	FLASH	FRAM (Ferroelectric)	MRAM (Magnetic)	PCM (Phase change)
Relative cell size*	5 - 10	0.25 - 1	3 - 10	1 - 3	0.8 - 2
Scalability	Poor	Fair	Poor	Poor	Good
Granularity (E)	Byte / Word	Block	Bit	Bit	Bit
Endurance	10 ⁶	10 ⁵	10 ¹⁰ (destructive read)	>10 ¹⁴	10 ¹²
Write time (P/E)	ms / ms	µs/s	< 100 ns	< 100 ns	< 100 ns
Write Power	10V x 100μA (1000)	5V x 1mA (5000)	3V x 100μA (300)	1.8V x 10mA (1800)	3V x 1mA (3000)
Maturity (target volume date)	Volume prod.	Volume prod.	Limited prod.	Test chips > 2004	Test chips >2004

Smart-card specific impact of the internal NVM

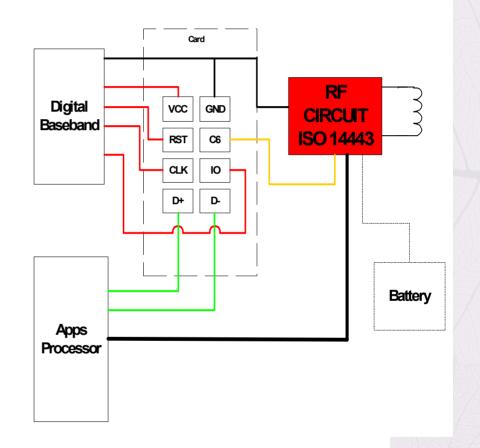
- Smart-card may become a more and more "memory-dominated" device
- On-chip NVM limitation may require different RAM usage
 - Availability of a RAM Cache or Buffer
 - CACHE still limited by:
 - Initial loading of program in fast applications
 - Cache management vs. security
 - BUFFER can be used
 - Cost trade off
- Direct application programmability in NVM
 - Data must be safely stored during operations
 - House keeping functions may be required for clearing (e.g. FLASH)
 - NVM program/erase timing variable (needs optimised algorithms) versus real time
- Direct applications execution from NVM
 - Optimization may be needed for speed / power
 - May require many standard primitives to be stored in ROM
 - Instruction cache or buffer usage may be considered



P-Flash

Secondary storage support

Challenge: Need for a secure Private Tamper Environment


Supporting solutions still to validate

- MAC
- Hash-tree (HW, SW or mixed)
- Encryption

Communication bandwidth

- ISO protocols and current I/O structure limited
- New fast protocols requested
 - USB (1.0, 2.0, OTG/Interchip)
 NFC
- Multiple interfaces needed
- Standardization essential
- New packages?
- Support of protocols for external memory wishful
 - SPI, other?
- Where can we go with further on-card integration of wireless protocols?
 - Wi-Fi?
 - UWB?

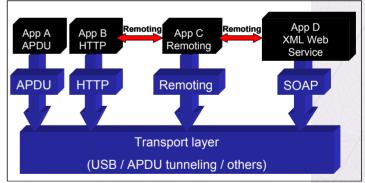
Example in the Mobile Com area

Openness of programming interfaces: High-level RTE, standard communication stacks

High-level RTE

- JavaCard RTE paved the way but...
- Still very different from Java flavors need extensions for becoming closer from
-other framework maybe legitimate in the smart card environment (.net, OSGI,...)
- Security model should support secure , perfect firewall, "post-issuance" and hopefully remote secure personalization

Standard communication stacks


- Get rid of Current ISO 7816 "master-slave" and APDU centric limitations:
- Use of an I/O stream allows a more natural coding
- Read and Write access can be mixed without protocol clutter
- Structures can be locally declared and complex mapping can be read/write in one shot
- Support Multiple Message Wire Formats no more sustainable
- On-card implementation of TCP/IP sockets mandatory (IVP4 and IPV6), including the security related aspects (e.g. IPSEC)
- On-card Web/server capabilities mandatory for interactions with the environment

Embedded SW internal architecture and design flow

From « application support » to «service delivery» shift of paradigm

- SW Framework to deliver Card services over LAN/WAN to card supporting devices (terminals, servers)
- SW Framework to administrate platform and services
- SW Framework to support legacy applications
- Integration architecture enabling easy/cheap deployment of smart-card services in an service oriented infrastructure
 - On-card Web service support and remoting
 - Peer to Peer
- Smart card SW design flow and methodology to be completely revisited
 - Component oriented approach
 - Closer connection with HW design flow mandatory to optimize use of new HW resources

Richer OS capabilities

Major requirements to support

- Multi-thread, multi-tasking (Call handling in Mobile Pay-TV)
- Real time operations (e.g. biometry, streaming)
- Availability (e.g; fleet management)
- Concurrency
- Privacy enhanced technologies (anonymity, pseudonymity,...)

Underlying SW challenges

- Preemptive concurrency model in reduced resource environment
- Dynamic resource control and (de)-allocation in dynamic multi-application support
- Scheduling for real time application
- Optimal resource allocation to applications

Micro-kernel potential in this respect is very high

- Feasibility of very small μ-kernel footprint demonstrated (e.g. L4)
- Various scheduling strategies, w/ or w/o pre-emption easily testable
- Abstraction of devices & enhancement of interrupt subsystem
- MMU/MPU management is encapsulated in the µkernel
- Fast IPC support
- Flexibility
- Correctness....up to the limit induced by HW parallelism and SW concurrency

Adaptable security supported by intelligent cooperation with HW

Several problems to address

- Absolute level of security required
- Strongly depends on the environment (E.G. Pay-TV vs EMV payment)
 Security update at reasonable cost
 - E.G. crypto algorithm update, security policy updates
- Access to critical HW resources and critical Assets
 - E.G. crypto keys, user credentials
- Simultaneous management of Trusted and non Trusted applications
 - E.G. SIM application with Games, Multimedia applications

Some related underlying challenges

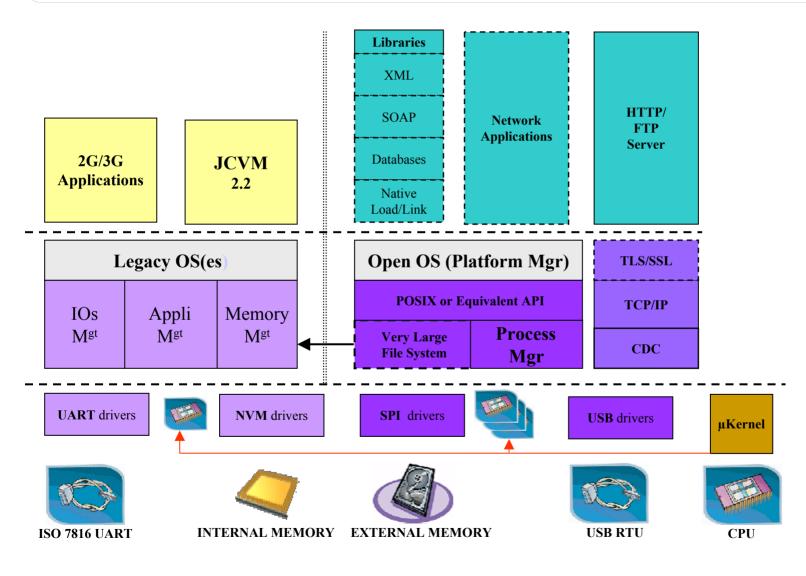
- Security intelligence sharing/cooperative models between Cards (HW/SW), Terminal and System
- Level of HW "re-programmability"
- Secure "over-the-air" or "over-the-wire" personalization update capabilities
- Security assessment of the underlying application segregation mechanisms

Software validation and test, formal techniques, automation

In general, Smart card development SW is not fundamentally different from other SW development activities

- Error prone
- Complex
- Costly

Classical SW innovation and Challenges have nevertheless to be tuned to some specifics items


- HW/<u>Trusted SW</u> design flows
- Trusted embedded SW factory
- Powerful formalisms and tools for
 - Security modeling
 - Security validation
- Security constrained test generation and <u>fault modeling</u>
- Test coverage

axalto

Target Smart Card SW architecture

Design difficult challenges (HW& SW)

- Productivity to avoid exponentially increasing design costs. Re-use.
- Power management.
- System-level integration of heterogeneous technologies
- Error tolerance relaxing for cost reduction ?
- Development of SOC test methodologies including Security constraints (from DFT to DF for Secure T)

Productivity to avoid exponentially increasing design costs. Re-use

About 90 % design methodologies still serial

- Little interaction between SW/application developers and HW developers
- Causes long design cycle
- Consistency of security chain (HW/SW) hard to maintain all across the design flow, even in a security constrained methodology (CC, FIPS,..)
 - Need for for more generic co-design methodologies taking security in account

Technology costs

- Current NVM technology not mainstream (EEPROM)
- Security overhead costs very high
- Cost/performance ratio not optimal versus market expectations
- NVM disruption mandatory
 - Flash? PCM?

Re-use

- HW/SW re-use concepts start to diffuse in the industry
- Security re-use still a wish but not a reality. Certification costs prohibitive

Power management

Two major types of requirements

- Functional requirements
 - Device working at spec in multi-application contexts
 - e.g. Mobile Pay-TV and GSM/UMTS
 - Low power
 - User acceptance
 - Autonomy
- Security requirements
 - Resistance to various types of attacks based on electrical signatures

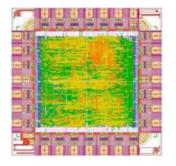
Need for a global system approach

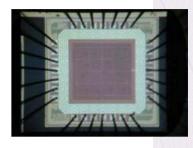
- Need for dedicated HW and SW primitives
- Need for a Power Management Framework enabling HW and SW handshake at functional and security levels

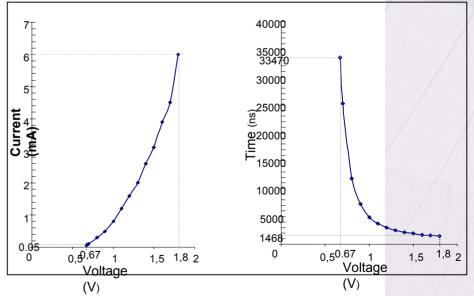
axalto

HW primitive example: Asynchronous Logic

Objective


- Reduce electrical signature
- Improve DPA resistance


Approach


- Definition of a formal model of the asynchronous circuits (logical and electrical level)
- Use the model to analyze circuits leakage and define the DPA countermeasures
- Design flow specified for DPA resistant asynchronous circuits
- General DPA resistance criterion specified to compare the prototypes resistance against DPA

Potential of ASL in terms of DPA resistance demonstrated

- e.g crypto operators by TIMA in the MEDEA+ <u>Esp@ss</u> project
- Concept extension to a larger extent still to be assessed

SW primitive example: Energy masking in RSA computations

Square-and-multiply always

Algorithm

- Input: x,n
- Input: $d = d_{m-1}2^{m-1} + \dots d_1 2 + d_0$
- Output: y₀ = x^d mod n
- Y₀:=X
- For I=m-2 down to 0 do
 - $y_0 := y_0^2 \mod n$
 - $y_1 := y_0 x \mod n$

$$y_0 := y_d$$

- End for
- **Return** y₀
- SPA safe.....but

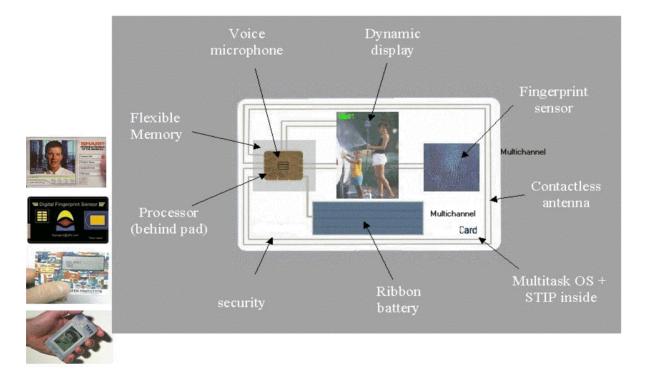
First values of y₀ depend only of few bits of d => DPA attack feasible

- > 8 highest weight bits deducible => $d_{0 th}$
- Check d_{0th} by power consumption
- Iterate to find all bytes of d by blocks of 8

P & Q PRIME N = PQED = 1 MOD (P-1)(Q-1) $C = M^{c}$ MOD N $M = C^{o}$ MOD N RSA Algorithm

DPA-safe modification

- $f(v_1,...,v_2) = v_1 \cdot v_2 \pmod{n}$
- x= x1.x2 (randomly)
- $y_1 = x_1^d \mod n$
- $y_2 = x_2^d \mod n$
- $\mathbf{y}_0 = \mathbf{y}_1 \cdot \mathbf{y}_2 \mod \mathbf{n}$

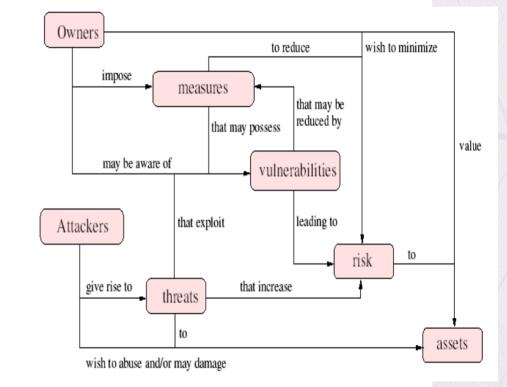

Power Management Framework example: device signatures

- A lot of critical effects to consider
 - Timing signature
 - Current, EMC signature
 - Other.....(radiation, SEU,...)
- Strongly influenced by the design choices
 - Architecture
 - Logical
 - Electrical
 - Physical
- Hard to control with classical design tools
 - Synthesis tools may force wrong RTL/Gate choice
 - Electrical implementation may create unbalanced paths
 - Physical effects hard to predict until final layout completed
- Severity may be strongly affected by the SW under execution
- No global supporting tool available
 - Addressing multi-level and back-annotation support
 - No guided support for absolute/random signature generation/control process
 - Signature evaluation coupling SW execution with parasitic electrical simulation
 - Proprietary solution and experience is the only solution today

System-level integration of heterogeneous technologies

- Next generation od smart-cards applications will need « on-card » integration of « MEMS » components....
-in addition to the remote control of some other

Besides technology and manufacturing (new form factors) problem secure remote control will be a key challenge



Error tolerance relaxing for cost reduction

- Common criteria has created a common language to speak about security, but
 - Complex
 - Costly
 - Hardly coping with TTM constraints

More research needed to develop

- Incremental certification
- Efficient maintenance schemes
- Related support tools

Development of SOC test methodologies including Security constraints (from DFT to DF for Secure T)

DFT strategy should not allow chip to work under out of band perturbation

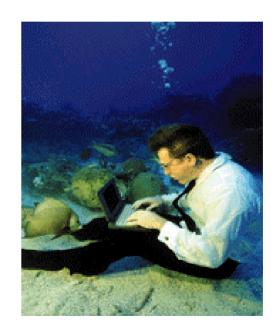
- Clock or power supply glitches
- Radiation, Light, laser...
- Besides known "perturbation" effects large room for unknown

DFT strategies can be of two types

- Detect source of propagation and protect against perturbation effects
- Detect faults effects of perturbation and stop propagation

No global solution exist but fault detecting effects very complex

- Requires redundant state encoding => illegal state detection
 - Redundancy level? Cost issue? Coverage issue?
 - Modelization and simulation are complex
 - Few tools exist and bring too little coverage
 - Verification and test of detection still a problem


A synthesis of previous material: Ambient Intelligence

Smart-card role in ambient intelligence scenarios (examples)

- Storage/management of user profile and preferences, privacy attributes
- Seamless transfer to ambient network of user-neutral information
- User –controlled transfer to ambient network of user-sensitive environment
- Context sensitive user Identity/credential management
- Authentication Framework management
- Transaction management
- Context-aware control of user's environment

Smart-card relevant design challenges

- On-card wireless interfaces: NFC, Zigbee-UWB,...
- Embedded µ-sensors
- Low power design, on-card batteries
- Native of remote control of user CE appliances peripherals (Storage, MMI and Visualization,....)
- IPV6 permanent addressing capabilities/IPV6 Mobile
- Complete IPSEC security framework compatibility
- Network-neutral, WEB-service enabled framework
- On-card mobile agent SW technology

Conclusions

- Smart cards are just entering a new phase of their development
- Changes in the environment may create numerous business opportunities
- Design paradigms for smart card must be revised dramatically to potentially exploit those new opportunities
- There remain some difficult HW and SW technical challenges in front of us, due to some specific constraints of the constraints
- Tighter HW and SW co-design flows, tuned to smart card specifics can be one of accelerating success factors
- Cultural exchanges (in and out) with other domain may benefit to the whole industry as smart card part of the pie (1% semi conductor market) may not give the adequate Return on Investment
- Very active participation of University and Research is mandatory

