

Flexible multi-processing memory architectures

Kees Vissers

Xilinx

FPGA, the last 10 years

Context

- operand routing is expensive
- Processors and processing is cheap
- More work per instruction makes sense (if it fits):
 - application specific instructions, e.g. media instructions
 - vector processing
- On- chip memory is limited, but easy to get to
- Off-chip memory is unlimited, but hard to get to...

Single processor

- registers, load and store instruction,
 - typical 16-128 registers, 1-5 cycles execute, pipelined
- Level one cache: e.g. D-cache, I-cache often run at processor speed
 - typical 16-64 Kbyte, 5-50 cycles for a cache miss, runs at processor clock speed
- Level two (and three) cache: often unified
 - typical 128K-1Mbyte, needs to go off-chip, hundreds of processor cycles, runs at the interface speed.

Caches and DMA

Cache:

- hold the most recently used data. Bad for streaming, bad for large program jumps.
- Abstract where what variable is: c= A[i] + B[j]
 DMA:
- explicitly program where what data is
- requires synchronization with the program loop
- programmed pre-fetching, small stream-buffers

Implicit Flow control

Buffer

- full and empty signals, asynchronous behavior
 Shared memory
- scheduled access guarantees proper order
- low level semaphores (programmer visible?)

Programming concepts: blocking read or writes, blocking guards (CSP), network of actors.

Multi-processor models

- Sandbridge
- ST multi-processor core
- JPEG2000, micro-blaze network
- Streaming over multi-processors, e.g. tensilica
- FPGA styles
- SMP, cache coherent ARM, cache coherent media processors
- IBM/Toshiba/Sony cell processor

FPGA: the ultimate solution

- Customers like: glue-less, risk free, programmable systems, that allow internet updates.
- The ONLY platform that can do it ALL:
 - Programmable I/O, very High Speed I/O
 - Programmable function
 - Programmable memory hierarchy
 - Programmable internal interconnect

Processors and Pipelines

Architectural Efficiency Spatial vs. Temporal Computing

FPGA (*c*=*w*=1)

"Processor" (*c*=1024, *w*=64)

Figures courtesy of André DeHon, California Institute of Technology

What language for what

	Transaction Level	RTL	C/C++	Matlab/ Simulink	CSP, Click, CAL etc
Cycle accurate	-	++		-	
Concurrency	++	++		++	++
Type system	SystemC: ++ SystemVerilo g: ++	VHDL: + Verilog: -	C: + C++: ++	+	-/+
High Level of Expression	+		++	+	++
Compilation for Processors	-		++	+	+
Synthesis for FPGAs and Asics	-	++	-	+	+

Platform Studio

Your Desktop SoC Factory

Xilinx DSP Hardware Platforms

Synchronous

Dual-Port RAM

Hundreds of XtremeDSP slices

100+ multipliers

System Generator for DSP

Abstract from FPGA details or Processor Details

Memory primitives

Design objective: build a problem specific balanced pipeline that minimizes the on-chip storage.

- Fifo, with flow control
- Buffered fifo, with flow control
- Shared memory, with access control
- Sliding window, with DMA

Memory primitives low level

Design objective: build a problem specific memory hierarchy out of pre-fabricated primitives:

- Registers,
- Fifo, with flow control (synchronous or asynchronous)
- BRAM: Shared memory (synchronous or asynchronous)
- off-chip memory + memory controller

MPEG-4 Decoder - Resources

(Throughput of 50k MB/sec; Single input stream)

Hardware Block	Lines C	Lines VHDL	BRAMs	Slices	MULTs
Input Interface	430	100	1	20	0
Parser/VLD	1,891	5,820	0	1,670	2
Copy Controller	406	1,634	0	700	1
Motion Compensation	265	1,527	0	500	2
Texture/IDCT	943	2,969	6	2,050	23
Texture Update	126	401	0	150	2
Auxiliary Controllers	189	1,916	16	1,470	0
Communication/Memory	0	0	28	250	0
Total	4,250	14,367	51	6,810	30

DSP Programming Model

Methodology re-couples behavior with implementation (while abstracting hardware details *when possible*)

Packet processing for the "software guy"

Programmer's view:

Packets in system are stored in one place

Processing elements (PEs) operate on packets within this communal memory

Actual platform FPGA implementation:

Highly distributed memory architecture

- parts of packets are stored at relevant PEs
- storage encompasses registers, on-chip block memory, off-chip memory

Tools automate the generation of the memory architecture

Packet processing for the "hardware guy"

Programmer's view:

Packets in system flow through inter-block FIFOs

Represented in *Click Plus* as Queue elements between processing elements (PEs)

Actual platform FPGA implementation:

Shared multiple-port memory controller for external memory

- inter-block FIFOs are mapped to areas of the external memory
- dynamic configuration of the FIFO collection and mappings

Tools automate the generation of the memory architecture

Challenges

- Build good compilers and synthesis from new concurrent specifications (CSP, Click, CAL)
- Extract parallelism from C programs.....
- Support High-level descriptions
- Integrate a development environment for processors and bit-oriented FPGA design

Conclusions

- Streaming interfaces and flexible memory architectures are a key benefit.
- FPGAs have the tools to build Multiple Processor systems
- FPGAs enable the programming of total systems consisting of I/O, Memory and processing
- The concurrent programming environment is essential

Do I need a network on-chip?

- Pro:
 - no bus
 - time-multiplexed wires
- Con:
 - High latency: multi-threading, more on-chip storage

Typical FPGA point to point wires: 10,000 wires at 200MHz = 2000Gbits/s = 250Gbyte/s

Acknowledgement

- Kristof Denolf, IMEC
- Adrian Chirila Rus, IMEC
- Robert Turney, Xilinx
- Paul Schumacher, Xilinx
- Gordon Brebner, Xilinx

