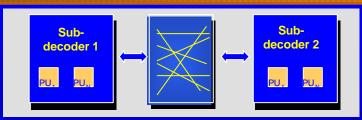

Breaking the Interleaving Bottleneck in Communication Applications for Efficient SoC Implementations

Norbert Wehn wehn@eit.uni-kl.de


MPSoC'05, 11-15 July 2005 Relais de Margaux Hotel, France

Generic Decoding Structure

- 1. Subdecoder 1 processes one complete block
- 2. After finishing the calculation, data are sent to subdecoder 2
- 3. Subdecoder 2 starts block processing...
- 4. Iterate until stopping crtierion fullfilled
- Information exchange takes place "randomly"
 - Tanner graph (Parity check matrix)/ Interleaver
 - Quality of "randomness" influences communcations performance
- High Throughput/Low Latency achitectures
 - Interconnect centric architectures

Solving Interconnect Bottleneck

Crossbar functionality with output blocking conflict (MPSoC'04)

Conflict free by code design

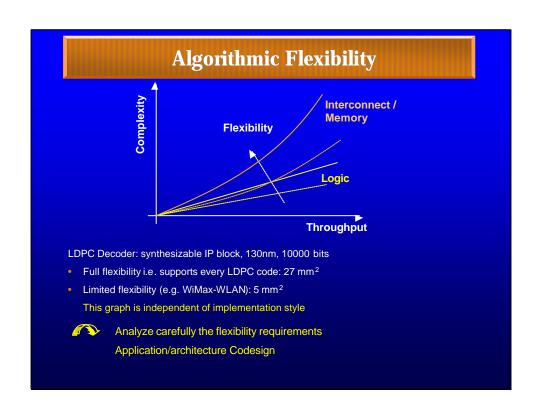
- Solves the interconnect problem at the "system level"
- Tanner Graph/Interleaver is designed according to a fixed architectural template with regular interconnect topology e.g. barrelshifter
- · Architecture imposes constraints on the code
 - Impact on communications performance

Run-time conflict resolution (MPSoC'04)

- Largest flexibility, no impact on communications performance
- NoC approach

Algorithm Design Space

- Turbo-Decoder UMTS compliant, 166MHz, 180nm technology, Throughput 100 Mbit
 - NoC approach, large flexibilty
 - 14 parallel units, area = 16.84 mm² (14mm² PUs, 2.8mm² NoC)
 - Conflict free interleaver design, limited flexibility
 - 10 parallel units, area=11.23 mm² (10,3mm² PUs, 0.9mm² Barrelshifter)
- Implementing LDPC Decoding on Network-On-Chip, T. Theocharides, G. Link, N. Vijaykrishnan, M. J. Irwin, Int. Conference on VLSI Design 2005
 - 1024 Bit block size, 1.2Gb/s (?), R=0.75
 - NoC: 5x5 2D mesh, dimension-order routing, large flexibility
 - 160nm CMOS Technology, 1.8V, synthesis, 500 MHz, 110 mm², ~30 Watt
- A. Blanksby, C. Howland, IEEE Journal on Solid-States Circuits
 - 1024 Bit block size, 1 Gb/s, Rate=0.5
 - full hardwired interconnect network, no flexibility at all
 - 160nm CMOS Technology, 1.5 V, synthesis, 64 MHz, 52.5mm², ~700mW


DVB-S2 LDPC implementation

- Blocksize 64800 Bit, R=1/4..9/10, 0.7 dB to Shannon limit
- Synthesis results for the DVB-S2 LDPC code decoder

Area [mm²] (0.13um, 270MHz)		Area [mm²]
RAMs	Channel LLR Messages Addresses/Shuffling	1.997 9.117 0.075
Logic	Functional Nodes	10.8
Control logic Shuffling Network Total Area [mm²] Throughput[Mbit/s] @30iter		0.55 22.74 255

Why is this implementation so efficient?

- Code was defined with implementation complexity in mind
- IRA codes: subset of LDPC codes
- Limited flexibility (11 Tannergraphs)
- Permutation network
 - Shuffling network with some "tricky" memory allocation/assignments

Conclusion

The Gap can be closed

- Application/Architecture Codesign
- Match the architecture & application
- "Just enough flexibility"
 - Application
 - Implementation

Thank you for listening!

For further information please visit http://www.eit.uni-kl.de/wehn