Understanding the Value Chain for MPSoC

The Critical Role of Algorithmic Engines in Consumer SoCs

Jacques Benkoski MPSoC Presentation August 2006

Consumer SoCs Differentiation

Recent Example: Nokia releases three phones on April 25^{th,} 2006

•N93 The ultimate spontaneous video recorder
•N73 The camera replacement with music
•N72 A moderate camera with FM radio

Algorithmic Engines are the Main Differentiators

Platform-based MPSoCs

Re-usable "blocks" for a product family

- μP, bus, bridges & I/O
- Other off-the-shelf IP
- Interchangeable algorithmic engines based on a product's needs

Bhusan Gupta, PhD Director, ST-Berkeley Labs Central Research & Development

Evolution of Complex Algorithmic Engines

- No longer just "the" MCU/DSP
- A set of application processors dedicated to specific task(s)
- Clean SOC architecture with processors, application processing logic and memories

1995

Non synthesizable processors Custom Memory Little algorithmic hardware

2001

Synthesizable processors (ARM, MIPS, Tensilica) Compiled Memory (Virage) Simple custom algorithmic hardware (JPEG)

2006

Synthesizable ARM, MIPS (Tensilica) Compiled Memory **Complex configurable algorithmic** hardware (H.264)

U.S. VENTURE PARTNERS

Complex Algorithmic Engines are Multiprocessors

- An efficient architecture is a combination of
 - Dedicated HW blocks
 - Programmable processor(s)
 - Local/global communication and data accesses
- To meet performance/cost goals it is also applicationspecific

H.264 Encoder Block Diagram

Key Design Issues

- Rapidly create multiple implementations with different performance – cost - power requirements with minimal efforts and:
 - Concurrency
 - » To cope with Massive Computation
 - Efficient Data Transfer Architecture
 - » To cope with Massive Data Transfer
 - Application Specific computation and communication architecture
 - » To cope with Cost and Power Constraints
 - Higher Level Programming Model and automatic design/mapping
 - » To cope with Huge Design Time
 - Verification of concurrent, mixed HW/SW systems

Adapted from: Ferid Gharsalli, et.al. An Efficient Architecture for the Implementation of Message Passing Programming Model on Massive Multiprocessor SoC

Most Common Complex Algorithmic Engines

	SEGMENT	EXAMPLE ALGORITHM
	VIDEO	H.264 MPEG 2
	AUDIO	MP3 WMA AC3
	IMAGING	JPEG
	WIRELESS	802.11a 802.11b 802.11g
N		

Complex Algorithmic Engines Trend

U.S. VENTURE PARTNERS

Source: InStat, IDC, Zoran and Synfora (DSC/Camcorders and 2009-2010 estimates)

Conclusions

- Complex algorithmic engines differentiate consumer MPSoCs
- The number of algorithmic engines to be designed grows much faster than the number of design starts
 - Need chip architectures and design methods for
 - Systems with interchangeable algorithmic engines
 - Automatically implementing complex algorithmic engines with different area/power/performance requirements from a single high level specification

