
Concurrent Exploration of
Memory and Communication

Architecture for MPSoCs

Nikil Dutt
ACES Laboratory

Center for Embedded Computer Systems

Donald Bren School of Information and Computer Sciences

University of California, Irvine

dutt@uci.edu

http://www.ics.uci.edu/~aces

mailto:dutt@uci.edu

MPSOC 06 Lecture # 2Copyright © 2006 UCI ACES Laboratory http://www.cecs.uci.edu/~aces

Data Flow Replacing Data Processing
As Major SoC Design Challenge

I/O Bus

Main Bus

Core N
µP

Core 2

µP Sub
systemµP

Mem Bus

Core 1

DRAMC

SoCs

Circa 2002
Critical Decision Was uP Choice

SoCs Circa 2005 Critical Decision Is Interconnect Choice

Exploding core counts
requiring more advanced
Interconnects

EDA cannot solve this
architectural problem easily

Complexity too high to hand
craft (and verify!)

Communication Architecture Design and Verification becoming
Highest Priority in Contemporary SoC Design!

Source: SONICS Inc.

MPSOC 06 Lecture # 3Copyright © 2006 UCI ACES Laboratory http://www.cecs.uci.edu/~aces

Need for Communication-centric Design Flow

Communication Architectures in today’s complex systems
significantly affect performance, power, cost and time-to-market!

Communication Architectures in today’s complex systems
significantly affect performance, power, cost and time-to-market!

communication architecture
consumes upto 50% of total

on-chip power!

communication is THE most
critical aspect affecting
system performance

communication architecture
design, customization,

exploration, verification and
implementation takes up the

largest chunk of a design cycle

ever increasing number of wires,
repeaters, bus components

(arbiters, bridges, decoders etc.)
increases system cost

MPSOC 06 Lecture # 4Copyright © 2006 UCI ACES Laboratory http://www.cecs.uci.edu/~aces

Bus Architecture Synthesis

S1S1

S3S3

S2S2

MEM3MEM3M3M3

MEM2MEM2

M2M2

CPU1CPU1

MEM1MEM1

S4S4

M2M2

CPU1CPU1

S1S1

MEM3MEM3

MEM2aMEM2a

S3S3

S2S2

periphmain1

bridgebridge

MEM1MEM1 S4S4

MEM2bMEM2b

main2

M3M3

bridge bridge

bridge bridge

main3

bridgebridge
Bus Architecture

Synthesis

M2M2

CPU1CPU1

S1S1

MEM3MEM3

MEM2aMEM2a

S3S3

S2S2

periph

MEM1MEM1 S4S4

MEM2bMEM2b

main1

M3M3

bridge bridge

main2

bridgebridgeM2M2

CPU1CPU1

S1S1

MEM3MEM3

MEM2aMEM2a

S3S3

S2S2

periph

MEM1MEM1 S4S4

MEM2bMEM2b

main1

M3M3

bridgebridge

M2M2

CPU1CPU1S1S1

MEM3MEM3

MEM2aMEM2a

S3S3

S2S2

periph

MEM1MEM1

S4S4

MEM2bMEM2b

main1

M3M3

bridge bridge

main2

bridgebridge

M2M2 CPU1CPU1

S1S1

MEM3MEM3

MEM2aMEM2a

S3S3

S2S2

periph

MEM1MEM1

S4S4

MEM2bMEM2b

main1

M3M3

bridge bridge

main2

bridgebridge

Arbitration strategy (RR, TDMA, static)

Data bus widths

Bus clock speeds

DMA burst sizes

Communication Parameter Space Bus Topology Space

X
Manual traversal of this vast exploration space not practical

But designers today still create high level simulation models and manually
iterate through different design configurations!

MPSOC 06 Lecture # 5Copyright © 2006 UCI ACES Laboratory http://www.cecs.uci.edu/~aces

Need for Physically-Aware BA Synthesis

IP1

IP2

After physical design, we detect a bus cycle
time violation!

Such a violation has adverse effect on system
cost, complexity and constraint satisfiability

To eliminate bus cycle violations, designers
pipeline busses with latches, register slices …

- severely effects performance
- considerable manual rework of RTL
- extensive re-verification effortSince BA synthesis determines effective capacitance on bus,

there is a need to make BA synthesis physically aware

MPSOC 06 Lecture # 6Copyright © 2006 UCI ACES Laboratory http://www.cecs.uci.edu/~aces

Our Approach: FABSYN (DAC-2005)

S1S1

S3S3

S2S2

MEM3MEM3M3M3

MEM2MEM2

M2M2

CPU1CPU1

MEM1MEM1

S4S4

M2M2

CPU1CPU1

S1S1

MEM3MEM3

MEM2aMEM2a

S3S3

S2S2

periphmain1

bridgebridge

MEM1MEM1 S4S4

MEM2bMEM2b

main2

M3M3

bridge bridge

bridge bridge

main3

bridgebridge

Automated
Bus Architecture

Synthesis

Floorplan and Wire Delay Estimation Engine

♦ early BA exploration and timing violation detection / elimination
♦ verify feasibility of synthesized BA early in the design flow
♦ saves costly design iterations later

♦ increasingly important in the deep submicron era as
♦ clock speeds increase
♦ lengthy propagation delays cause timing violations

COSMECA: Application Specific Co-
Synthesis of Memory and Communication

Architectures for MPSoC

Sudeep Pasricha and Nikil Dutt

ACES (Architectures and Compilers for Embedded Systems) Lab
Center for Embedded Computer Systems (CECS)

University of California, Irvine
{sudeep,dutt}@cecs.uci.edu

MPSOC 06 Lecture # 8Copyright © 2006 UCI ACES Laboratory http://www.cecs.uci.edu/~aces

Outline

Motivation

Synthesis of Communication and Memory Architectures

Problem Formulation

Related Work

COSMECA Co-Synthesis Methodology

Case Studies

Conclusion and Future Work

MPSOC 06 Lecture # 9Copyright © 2006 UCI ACES Laboratory http://www.cecs.uci.edu/~aces

Motivation

Modern multi-processor system-on-chip (MPSoC) designs rapidly
increasing in complexity

large bandwidth requirements
massive data sets which must be stored and accessed from memories

especially for multimedia and networking applications

MPSoC communication architecture fabric has to cope with entire
inter-component traffic

considerably impacting performance; design cycle time

Memory architectures dictate most of the data traffic flow in MPSoC
considerably impacting performance; die area

upto 70% of die area today; estimates indicate figure will go upto 90% soon

Therefore, it is IMPERATIVE that designers focus on exploration and synthesis
of memory and communication architectures early in the design flow

e.g. using concepts proposed in platform-based design

MPSOC 06 Lecture # 10Copyright © 2006 UCI ACES Laboratory http://www.cecs.uci.edu/~aces

Why Memory and Communication
Architecture Co-Synthesis?

Traditionally, in platform-based design, memory synthesis is
performed before communication architecture synthesis

mainly due to tractability issues
this can lead to sub-optimal design decisions

resulting in higher cost systems

µP1

µP2

µP3

µP4

µP5

Mem1

Mem2

Mem5

S3

Mem4

S1
S2

Mem3

consider synthesis of memory,
communication architectures
for the MPSoC shown

MPSOC 06 Lecture # 11Copyright © 2006 UCI ACES Laboratory http://www.cecs.uci.edu/~aces

Why Memory and Communication
Architecture Co-Synthesis?

Typical separate synthesis case Co-synthesis case

µP1

µP2

µP3

µP4

µP5

Mem1 Mem2

Mem5

S3 Mem4

S1 S2 Mem3

µP1

µP2

µP3

µP4

µP5

Mem12 Mem35

S3 Mem4

S1 S2saves areareduces no.
of buses

|OO buffer| = 6
reduce area

Co-synthesis allows us to make better synthesis decisions, saving
number of busses, memory area and reducing system cost

mem area = 34.12 mm2

|bus|=11
mem area = 25.93 mm2

|bus|=9

MPSOC 06 Lecture # 12Copyright © 2006 UCI ACES Laboratory http://www.cecs.uci.edu/~aces

Outline

Motivation

Synthesis of Communication and Memory Architectures

Problem Formulation

Related Work

COSMECA Co-Synthesis Methodology

Case Studies

Conclusion and Future Work

MPSOC 06 Lecture # 13Copyright © 2006 UCI ACES Laboratory http://www.cecs.uci.edu/~aces

Bus Matrix Communication Architectures

Recent trend has been to use Bus Matrix communication
architectures to support high bandwidths for modern
MPSoC systems

AMBA, CoreConnect, STBus all support matrix configurations

ARM1

ARM2

ITC

MEM1

ROM

MEM2

Timer

Network I/F

MEM3
DMA

Input
stage

arb

arb

arb

arb

arb

arb

arb

slavesarbiters
matrix

masters
Decode

Input
stage

Decode

Input
stage

Decode

Full Bus Matrix

MPSOC 06 Lecture # 14Copyright © 2006 UCI ACES Laboratory http://www.cecs.uci.edu/~aces

Bus Matrix Communication Architecture
Synthesis

ARM1

ARM2

ITC

MEM1

ROM

MEM2

Timer

Network I/F

MEM3
DMA

Input
stage

arb

arb

arb

arb

arb

arb

arb

slavesarbiters
matrix

masters
Decode

Input
stage

Decode

Input
stage

Decode

ARM1

ARM2

ITC

MEM2

ROM

MEM1

Timer

Network I/F

MEM3

DMA

Input
stage

Decode

Input
stage

Decode

Input
stage

Decode

arb

arb

arb
matrix

partial bus matrix

Goal is to automatically synthesize a partial bus matrix with
minimal number of buses, and which meets all performance
requirements of the application

MPSOC 06 Lecture # 15Copyright © 2006 UCI ACES Laboratory http://www.cecs.uci.edu/~aces

Memory Architectures

Variety of different memory types available to satisfy storage
requirements in MPSoC applications

DRAMs, SRAMs, EPROMs, EEPROMs etc.

Typically
DRAMs -> larger memory requirements, slower, cheaper
SRAMs -> smaller memory requirements, faster, expensive
EPROMs and EEPROMs -> read-only data

Several tradeoffs during memory architecture synthesis
SRAM vs. DRAM

cost vs. performance vs. area
ports vs. number of memory blocks
…

MPSOC 06 Lecture # 16Copyright © 2006 UCI ACES Laboratory http://www.cecs.uci.edu/~aces

Memory Architecture Synthesis
COSMECA selects memory blocks from a library populated by several
types of memories

on-chip SRAMs
on-chip DRAMs
EPROMs and EEPROMs

Each memory type can have variants in library, having different
capacities, areas, ports, operating frequencies and access times

Memory synthesis in COSMECA essentially maps application arrays
and scalars to physical memories from the library

Goal is to automate memory architecture selection to meet memory
area bounds, while satisfying performance requirements

MPSOC 06 Lecture # 17Copyright © 2006 UCI ACES Laboratory http://www.cecs.uci.edu/~aces

Outline

Motivation

Synthesis of Communication and Memory Architectures

Problem Formulation

Related Work

COSMECA Co-Synthesis Methodology

Case Studies

Conclusion and Future Work

MPSOC 06 Lecture # 18Copyright © 2006 UCI ACES Laboratory http://www.cecs.uci.edu/~aces

MPSoC Performance Constraints

MPSoC designs have performance constraints that can be
represented in terms of Data Throughput Constraints

Communication Throughput Graph, CTG = G(V,A)
incorporates SoC components and throughput constraints

Throughput Constraint Path (TCP) is a CTG sub-graph

ARM1

ARM2

ITC

DB1
DB6

DB2

Timer

Network I/F

DB3

DMA

1 Gbps

DB4

DB5

MPSOC 06 Lecture # 19Copyright © 2006 UCI ACES Laboratory http://www.cecs.uci.edu/~aces

Problem Formulation

Given:
an MPSoC with performance, memory area constraints
a target bus matrix communication architecture (e.g. AMBA, STBus)

Assumptions:
hardware-software partitioning has been done already

except memories represented as abstract DBs
IPs are non-modifiable “black box” components

except DBs

Goals:
automatically synthesize bus matrix AND memory architectures
satisfy all throughput AND memory area constraints in design
primary objective -> minimize number of busses in matrix
secondary objective -> minimize memory area

Data Block (DB) – arrays, scalars

MPSOC 06 Lecture # 20Copyright © 2006 UCI ACES Laboratory http://www.cecs.uci.edu/~aces

Outline

Motivation

Synthesis of Communication and Memory Architectures

Problem Formulation

Related Work

COSMECA Co-Synthesis Methodology

Case Studies

Conclusion and Future Work

MPSOC 06 Lecture # 21Copyright © 2006 UCI ACES Laboratory http://www.cecs.uci.edu/~aces

Related Work
Plenty of work in the area of shared/hierarchical bus-based
communication architecture synthesis

Lahiri et al. [ICCAD 2000], Lyonnard et al. [DAC 2001]
Pinto et al. [DAC 2002], Ryu et al. [DATE 2003]
Pasricha et al. [ASPDAC 2005], [DAC 2005]

However, very few research efforts have looked at bus matrix synthesis
Ogawa et al. [DATE 2003] proposed a transaction based simulation
environment to explore and design a bus matrix

need to manually specify topology, arbitration scheme, memory mapping
too time consuming

Murali et al. [DATE 2005] proposed an automated application specific bus
matrix synthesis approach

work focuses on topology synthesis only
Pasricha et al. [ASPDAC 2006] proposed an automated application specific
bus matrix synthesis approach

synthesize BOTH topology and parameter values

MPSOC 06 Lecture # 22Copyright © 2006 UCI ACES Laboratory http://www.cecs.uci.edu/~aces

Related Work
Only a few approaches have attempted to simultaneously explore
memory and communication subsystems

Grun et al. [DATE 2002] considered connectivity topology in conjunction with
memory exploration

for simple processor-memory systems
Kim et al. [CODES+ISSS 2004] deal with bus topology and arbitration
exploration

to determine best memory port-to-bus mapping
Other memory synthesis approaches use static estimates of communication

e.g. Knudsen et al. [CODES 1998]

However, these techniques only address a small part of the problem
don’t really focus on co-synthesis of memory and communication
architectures

COSMECA is a novel co-synthesis approach which attempts to
automatically

synthesize bus matrix topology AND parameter values
simultaneously determine a mapping of data to physical memories while
also deciding number, size, ports and type of memories

MPSOC 06 Lecture # 23Copyright © 2006 UCI ACES Laboratory http://www.cecs.uci.edu/~aces

Outline

Motivation

Synthesis of Communication and Memory Architectures

Problem Formulation

Related Work

COSMECA Co-Synthesis Methodology

Case Studies

Conclusion and Future Work

MPSOC 06 Lecture # 24Copyright © 2006 UCI ACES Laboratory http://www.cecs.uci.edu/~aces

COSMECA Co-Synthesis Flow

CTGCTG

DBDGDBDG matrix
template
matrix

template

mem preprocessmem preprocess

constraint
set (Ψ)

constraint
set (Ψ)

output synthesized
architecture(s)

output synthesized
architecture(s)

Branch and bound
clustering algorithm
Branch and bound
clustering algorithm

ranked matrix
solution database
ranked matrix

solution database
memmap heuristicmemmap heuristic

matrix map
and analyze
matrix map
and analyze

optimize designoptimize design

mem
library
mem

library

IP
library

IP
library

Inputs

Inputs

Output

merge non-conflicting DBs in the CTG into VMs
- reduce mem area cost, by potentially reducing

number of mem modules in system

DBDG (Data Block Dependency Graph)
- determines if DBs have access conflict

µP1

µP2

µP3

S1
DB0

DB1
DB2

DB3

DB4

DB5

DB6

S2

S3

µP1

µP2

µP3

S1
DB0

DB1
DB2

DB3

DB4

DB5

DB6

S2

S3

VM0

VM1

VM2

VM3

VM4

MPSOC 06 Lecture # 25Copyright © 2006 UCI ACES Laboratory http://www.cecs.uci.edu/~aces

COSMECA Co-Synthesis Flow

CTGCTG

DBDGDBDG matrix
template
matrix

template

mem preprocessmem preprocess

constraint
set (Ψ)

constraint
set (Ψ)

output synthesized
architecture(s)

output synthesized
architecture(s)

Branch and bound
clustering algorithm
Branch and bound
clustering algorithm

ranked matrix
solution database
ranked matrix

solution database
memmap heuristicmemmap heuristic

matrix map
and analyze
matrix map
and analyze

optimize designoptimize design

mem
library
mem

library

IP
library

IP
library

TLM simulation to obtain app. specific data traffic statistics
- number of transactions on a bus
- average transaction burst size on bus
- memory usage profiles

µP1

µP2

µP3

S1
DB0

DB1
DB2

DB3

DB4

DB5

DB6

S2

S3

VM0

VM1

VM2

VM3

VM4

S2

S3

VM1

VM4

VM3

VM2

µP1

µP2

µP3

S1

VM0
map

Communication Parameter Constraint Set (Ψ)

To ensure that our approach generates realistic BA

Constraints are in the form of a discrete set of valid
values for BA parameters to be synthesized

- e.g. bus speeds which are multiples of 33Mhz, upto a max.
of 166Mhz, for a subsystem

Allows designer to bias the synthesis process based on
knowledge of the design and technology being targeted

MPSOC 06 Lecture # 26Copyright © 2006 UCI ACES Laboratory http://www.cecs.uci.edu/~aces

COSMECA Co-Synthesis Flow

CTGCTG

DBDGDBDG matrix
template
matrix

template

mem preprocessmem preprocess

constraint
set (Ψ)

constraint
set (Ψ)

output synthesized
architecture(s)

output synthesized
architecture(s)

Branch and bound
clustering algorithm
Branch and bound
clustering algorithm

ranked matrix
solution database
ranked matrix

solution database
memmap heuristicmemmap heuristic

matrix map
and analyze
matrix map
and analyze

optimize designoptimize design

mem
library
mem

library

IP
library

IP
library

MPSOC 06 Lecture # 27Copyright © 2006 UCI ACES Laboratory http://www.cecs.uci.edu/~aces

Branch and Bound Clustering Algorithm
Goal: cluster slave modules to minimize matrix cost

Start by clustering two slave clusters at a time
Initially, each slave cluster has only one slave

However, the total number of clustering configurations
possible for n slaves is (n! x (n-1)!)/2(n-1)

Extremely large number for even medium sized SoCs!

Solution: use a Bounding function for pruning
Called after every clustering operation
Uses lookup table to discard duplicate clustering ops
Discards non-beneficial clustering (i.e. no savings in no. of busses)
Discards incompatible clustering

e.g. mergers of busses with conflicting bus speeds
Discards clustering which violates b/w requirements

MPSOC 06 Lecture # 28Copyright © 2006 UCI ACES Laboratory http://www.cecs.uci.edu/~aces

COSMECA Co-Synthesis Flow

CTGCTG

DBDGDBDG matrix
template
matrix

template

mem preprocessmem preprocess

constraint
set (Ψ)

constraint
set (Ψ)

output synthesized
architecture(s)

output synthesized
architecture(s)

Branch and bound
clustering algorithm
Branch and bound
clustering algorithm

ranked matrix
solution database
ranked matrix

solution database
memmap heuristicmemmap heuristic

matrix map
and analyze
matrix map
and analyze

optimize designoptimize design

mem
library
mem

library

IP
library

IP
library

Guides mapping of VMs physical memories
- find N best solutions

minimize arb. scheme cost
prune OO buffer sizes
minimize bus clock speeds

S2

S3 MEM4

MEM2

µP1

µP2

µP3

S1

ROM
MEM1Ranked according to solution quality

– best (least no. of busses) to worst

MPSOC 06 Lecture # 29Copyright © 2006 UCI ACES Laboratory http://www.cecs.uci.edu/~aces

Outline

Motivation

Synthesis of Communication and Memory Architectures

Problem Formulation

Related Work

COSMECA Co-Synthesis Methodology

Case Studies

Conclusion and Future Work

MPSOC 06 Lecture # 30Copyright © 2006 UCI ACES Laboratory http://www.cecs.uci.edu/~aces

Case Studies

To evaluate effectiveness of our co-synthesis approach, we
applied it to 4 MPSoC applications from networking domain

PYTHON, SIRIUS – variants of existing industrial strength applications
VIPER2, HNET8 – larger systems derived from next-gen MPSoCs

Number of cores in MPSoC applications

Applications Processors Masters Slaves

PYTHON 2 3 8
SIRIUS 3 5 10
VIPER2 5 7 14
HNET8 8 13 17

MPSOC 06 Lecture # 31Copyright © 2006 UCI ACES Laboratory http://www.cecs.uci.edu/~aces

CTG for SIRIUS MPSoC

µP1

µP2

µP3

DMA

ASIC1

Watchdog
UART
ITC1
ITC2
VM1
VM2

Timer1
Timer2
VM3

VM8

VM12
VM13

Network I/F1

Network I/F2

Network I/F3

VM14

VM16

Acc1

VM4
VM5
VM6
VM7

VM9
VM10
VM11

VM15

VM17
VM18

protocol processor

network processor

network processor

hardware accelerator

CTG after mem preprocessing

MPSOC 06 Lecture # 32Copyright © 2006 UCI ACES Laboratory http://www.cecs.uci.edu/~aces

SIRIUS MPSoC Design Goals and Constraints
Design Goal: Throughput Constraint Paths (TCPs)

Communication Parameter Constraint Set

IP cores in Throughput Constraint Path (TCP) TCP constraint

µP1, VM3, VM4, DMA, VM16, VM17, VM18 640 Mbps
µP1, VM5, VM6, VM14, VM15, DMA, Network I/F2 480 Mbps
µP2, Network I/F1, VM8, VM9 5.2 Gbps
µP2, VM10,VM11,VM12, DMA, Network I/F3 1.4 Gbps
ASIC1, µP3, VM16, VM17, VM18, Acc1, VM13, Network I/F2 240 Mbps
µP3, DMA , Network I/F3, VM13 2.8 Gbps

Set Values
bus speed 25, 50, 100, 200, 300, 400
arbitration strategy static, RR, TDMA/RR
OO buffer size 1 – 8
mem mapping VM16,VM17=>DRAM; VM1,VM2=>EEPROM

Target bus matrix architecture: AMBA3 AXI bus matrix
Memory Area Constraint: 225 mm2

MPSOC 06 Lecture # 33Copyright © 2006 UCI ACES Laboratory http://www.cecs.uci.edu/~aces

SIRIUS Synthesized Output

µP1

µP2

µP3

DMA

ASIC1

Watchdog
UART
ITC1

EEPROM1

EEPROM2

Timer1

Acc1

ITC2
Timer2

eDRAM2

eDRAM1

SRAM1

SRAM2

SRAM3
Network I/F2
Network I/F3

static

static

TDMA/RR

200

400

200

100

200

100

200

200200

50

200

200

100

AXI Matrix (32 bit)
- bus speed

OO(3)

OO(2)

SRAM3
Network I/F1

4 MB

2 MB

memory area = 219.42 mm2

256 KB

512 KB

1 MB

512 KB
64 KB

128 KB

(2 r/w)

(1 r/w)

(1 r/w)

(1 r/w)

(1 r/w)

(1 r/w)
bus speed

OO buffer size

arbitration scheme

Memory Area : 219.42 mm2

Result obtained with COSMECA has 25% fewer busses and
21% less memory area compared to traditional approach

MPSOC 06 Lecture # 34Copyright © 2006 UCI ACES Laboratory http://www.cecs.uci.edu/~aces

Solution Tradeoffs for SIRIUS

150

175

200

225

9 9 9 10 10 10 10 10 11 11

busses in matrix

m
em

 a
re

a
(m

m
 s

q.
)

COSMECA allows designer to select a solution having the
desired combination of number of busses and memory area

variation in memory area and number of busses for the
ten best solutions (N=10)

MPSOC 06 Lecture # 35Copyright © 2006 UCI ACES Laboratory http://www.cecs.uci.edu/~aces

Bus Matrix Density Comparison

0

5

10

15

20

25

30

PYTHON SIRIUS VIPER2 HNET8

bu
ss

es
 in

 m
at

rix

traditional
COSMECA

40%
25%

31.5%

35.7%

COSMECA saves 25 – 40% in the number of busses
in the matrix compared to the traditional approach

MPSOC 06 Lecture # 36Copyright © 2006 UCI ACES Laboratory http://www.cecs.uci.edu/~aces

Memory Area Comparison

0
50

100
150
200
250
300
350
400
450

PYTHON SIRIUS VIPER2 HNET8

m
em

 a
re

a
(m

m
 s

q.
) traditional

COSMECA

COSMECA saves 17 – 29% in memory area
compared to the traditional approach

MPSOC 06 Lecture # 37Copyright © 2006 UCI ACES Laboratory http://www.cecs.uci.edu/~aces

Outline

Motivation

Synthesis of Communication and Memory Architectures

Problem Formulation

Related Work

COSMECA Co-Synthesis Methodology

Case Studies

Conclusion and Future Work

MPSOC 06 Lecture # 38Copyright © 2006 UCI ACES Laboratory http://www.cecs.uci.edu/~aces

Conclusion
We presented an approach for the automated co-
synthesis of memory and communication architectures
(COSMECA)

COSMECA couples the decision making process during
memory and communication architecture synthesis, to
generate better solutions

lower number of busses
lower memory area
lower cost

Results of applying COSMECA to 4 industrial strength
MPSoC applications indicate a saving of

upto 40% in number of busses, and
upto 29% in memory area

MPSOC 06 Lecture # 39Copyright © 2006 UCI ACES Laboratory http://www.cecs.uci.edu/~aces

Future Work
Incorporating cache customization in the memory synthesis
sub-framework

Crossbar/matrix generation for STBus, CoreConnect
standards, in the communication architecture synthesis sub-
framework

Incorporating power as another metric to guide COSMECA
co-synthesis methodology

MPSOC 06 Lecture # 40Copyright © 2006 UCI ACES Laboratory http://www.cecs.uci.edu/~aces

Acknowledgements

COSMECA research done jointly with
PhD student Sudeep Pasricha

Sponsors
Conexant, Inc. and UC MICRO program
NSF
SRC

MPSOC 06 Lecture # 41Copyright © 2006 UCI ACES Laboratory http://www.cecs.uci.edu/~aces

Publications, etc:
http://www.cecs.uci.edu/~aces

Thank you!

More Information

MPSOC 06 Lecture # 42Copyright © 2006 UCI ACES Laboratory http://www.cecs.uci.edu/~aces

Related Publications

[1] S. Pasricha, N. Dutt, M. Ben-Romdhane, “Extending the Transaction Level
Modeling Approach for Fast Communication Architecture Exploration, DAC 2004

[2] S. Pasricha, N. Dutt, M. Ben-Romdhane, “Fast Exploration of Bus-based On-
Chip Communication Architectures", CODES+ISSS 2004

[3] S. Pasricha, N. Dutt, M. Ben-Romdhane, "Automated Throughput-driven
Synthesis of Bus-based Communication Architectures", ASPDAC 2005

[4] S. Pasricha, N. Dutt, E. Bozorgzadeh, M. Ben-Romdhane, "Floorplan-aware
Automated Synthesis of Bus-based Communication Architectures", DAC 2005

[5] S. Pasricha, N. Dutt, M. Ben-Romdhane, “Constraint-Driven Bus Matrix
Synthesis for MPSOCs", ASPDAC 2006

[6] S. Pasricha, N. Dutt “COSMECA: Application Specific Co-Synthesis of Memory and
Communication Architectures for MPSoC ", DATE 2006

	Data Flow Replacing Data ProcessingAs Major SoC Design Challenge
	Need for Communication-centric Design Flow
	Bus Architecture Synthesis
	Need for Physically-Aware BA Synthesis
	Our Approach: FABSYN (DAC-2005)
	Outline
	Motivation
	Why Memory and Communication Architecture Co-Synthesis?
	Why Memory and Communication Architecture Co-Synthesis?
	Outline
	Bus Matrix Communication Architectures
	Bus Matrix Communication Architecture Synthesis
	Memory Architectures
	Memory Architecture Synthesis
	Outline
	MPSoC Performance Constraints
	Problem Formulation
	Outline
	Related Work
	Related Work
	Outline
	COSMECA Co-Synthesis Flow
	Branch and Bound Clustering Algorithm
	Outline
	Case Studies
	CTG for SIRIUS MPSoC
	SIRIUS MPSoC Design Goals and Constraints
	SIRIUS Synthesized Output
	Solution Tradeoffs for SIRIUS
	Bus Matrix Density Comparison
	Memory Area Comparison
	Outline
	Conclusion
	Future Work
	Acknowledgements
	
	Related Publications

