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Data Flow Replacing Data Processing
As Major SoC Design Challenge

I/O Bus

Main Bus

Core N
µP

Core 2

µP Sub 
systemµP

Mem Bus

Core 1

DRAMC

SoCs

Circa 2002
Critical Decision Was uP Choice

SoCs Circa 2005 Critical Decision Is Interconnect Choice

Exploding core counts 
requiring more advanced 
Interconnects

EDA cannot solve this 
architectural problem easily

Complexity too high to hand 
craft (and verify!)

Communication Architecture Design and Verification becoming 
Highest Priority in Contemporary SoC Design!

Source: SONICS Inc.
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Need for Communication-centric Design Flow

Communication Architectures in today’s complex systems 
significantly affect performance, power, cost and time-to-market!

Communication Architectures in today’s complex systems 
significantly affect performance, power, cost and time-to-market!

communication architecture 
consumes upto 50% of total 

on-chip power!

communication is THE most 
critical aspect affecting 
system performance

communication architecture 
design, customization, 

exploration, verification and 
implementation takes up the 

largest chunk of a design cycle

ever increasing number of wires, 
repeaters, bus components 

(arbiters, bridges, decoders etc.) 
increases system cost
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Bus Architecture Synthesis
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Arbitration strategy (RR, TDMA, static)

Data bus widths

Bus clock speeds

DMA burst sizes

Communication Parameter Space Bus Topology Space

X
Manual traversal of this vast exploration space not practical

But designers today still create high level simulation models and manually 
iterate through different design configurations!
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Need for Physically-Aware BA Synthesis

IP1

IP2

After physical design, we detect a bus cycle 
time violation!

Such a violation has adverse effect on system 
cost, complexity and constraint satisfiability

To eliminate bus cycle violations, designers 
pipeline busses with latches, register slices …

- severely effects performance
- considerable manual rework of RTL 
- extensive re-verification effortSince BA synthesis determines effective capacitance on bus, 

there is a need to make BA synthesis physically aware
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Our Approach: FABSYN (DAC-2005)
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Automated
Bus Architecture

Synthesis

Floorplan and Wire Delay Estimation Engine

♦ early BA exploration and timing violation detection / elimination
♦ verify feasibility of synthesized BA early in the design flow
♦ saves costly design iterations later

♦ increasingly important in the deep submicron era as
♦ clock speeds increase
♦ lengthy propagation delays cause timing violations



COSMECA: Application Specific Co-
Synthesis of Memory and Communication 

Architectures for MPSoC

Sudeep Pasricha and Nikil Dutt

ACES (Architectures and Compilers for Embedded Systems) Lab
Center for Embedded Computer Systems (CECS)

University of California, Irvine
{sudeep,dutt}@cecs.uci.edu



MPSOC 06 Lecture # 8Copyright © 2006  UCI ACES Laboratory    http://www.cecs.uci.edu/~aces

Outline

Motivation

Synthesis of Communication and Memory Architectures

Problem Formulation

Related Work

COSMECA Co-Synthesis Methodology

Case Studies

Conclusion and Future Work



MPSOC 06 Lecture # 9Copyright © 2006  UCI ACES Laboratory    http://www.cecs.uci.edu/~aces

Motivation

Modern multi-processor system-on-chip (MPSoC) designs rapidly 
increasing in complexity

large bandwidth requirements 
massive data sets which must be stored and accessed from memories

especially for multimedia and networking applications

MPSoC communication architecture fabric has to cope with entire 
inter-component traffic

considerably impacting performance; design cycle time 

Memory architectures dictate most of the data traffic flow in MPSoC
considerably impacting performance; die area

upto 70% of die area today; estimates indicate figure will go upto 90% soon

Therefore, it is IMPERATIVE that designers focus on exploration and synthesis 
of memory and communication architectures early in the design flow

e.g. using concepts proposed in platform-based design 
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Why Memory and Communication 
Architecture Co-Synthesis?

Traditionally, in platform-based design, memory synthesis is 
performed before communication architecture synthesis

mainly due to tractability issues
this can lead to sub-optimal design decisions

resulting in higher cost systems
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consider synthesis of memory,
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Why Memory and Communication 
Architecture Co-Synthesis?

Typical separate synthesis case Co-synthesis case
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S1 S2saves areareduces no. 
of buses

|OO buffer| = 6
reduce area

Co-synthesis allows us to make better synthesis decisions, saving 
number of busses, memory area and reducing system cost

mem area = 34.12 mm2

|bus|=11
mem area = 25.93 mm2

|bus|=9
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Bus Matrix Communication Architectures

Recent trend has been to use Bus Matrix communication 
architectures to support high bandwidths for modern 
MPSoC systems

AMBA, CoreConnect, STBus all support matrix configurations
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Bus Matrix Communication Architecture 
Synthesis

ARM1

ARM2

ITC

MEM1

ROM

MEM2

Timer

Network I/F

MEM3
DMA

Input
stage

arb

arb

arb

arb

arb

arb

arb

slavesarbiters
matrix

masters
Decode

Input
stage

Decode

Input
stage

Decode

ARM1

ARM2

ITC

MEM2

ROM

MEM1

Timer

Network I/F

MEM3

DMA

Input
stage

Decode

Input
stage

Decode

Input
stage

Decode

arb

arb

arb
matrix

partial bus matrix

Goal is to automatically synthesize a partial bus matrix with
minimal number of buses, and which meets all performance 
requirements of the application
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Memory Architectures

Variety of different memory types available to satisfy storage 
requirements in MPSoC applications

DRAMs, SRAMs, EPROMs, EEPROMs etc.

Typically 
DRAMs -> larger memory requirements, slower, cheaper
SRAMs -> smaller memory requirements, faster, expensive
EPROMs and EEPROMs -> read-only data

Several tradeoffs during memory architecture synthesis
SRAM vs. DRAM

cost vs. performance vs. area
ports vs. number of memory blocks
…
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Memory Architecture Synthesis
COSMECA selects memory blocks from a library populated by several 
types of memories

on-chip SRAMs
on-chip DRAMs
EPROMs and EEPROMs

Each memory type can have variants in library, having different 
capacities, areas, ports, operating frequencies and access times

Memory synthesis in COSMECA essentially maps application arrays 
and scalars to physical memories from the library

Goal is to automate memory architecture selection to meet memory 
area bounds, while satisfying performance requirements
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MPSoC Performance Constraints

MPSoC designs have performance constraints that can be 
represented in terms of Data Throughput Constraints

Communication Throughput Graph, CTG = G(V,A)
incorporates SoC components and throughput constraints

Throughput Constraint Path (TCP) is a CTG sub-graph
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Problem Formulation

Given:
an MPSoC with performance, memory area constraints
a target bus matrix communication architecture (e.g. AMBA, STBus)

Assumptions:
hardware-software partitioning has been done already

except memories represented as abstract DBs
IPs are non-modifiable “black box” components

except DBs

Goals:
automatically synthesize bus matrix AND memory architectures 
satisfy all throughput AND memory area constraints in design
primary objective -> minimize number of busses in matrix
secondary objective -> minimize memory area

Data Block (DB) – arrays, scalars
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Related Work
Plenty of work in the area of shared/hierarchical bus-based 
communication architecture synthesis

Lahiri et al. [ICCAD 2000], Lyonnard et al. [DAC 2001]
Pinto et al. [DAC 2002], Ryu et al. [DATE 2003]
Pasricha et al. [ASPDAC 2005], [DAC 2005]

However, very few research efforts have looked at bus matrix synthesis
Ogawa et al. [DATE 2003] proposed a transaction based simulation
environment to explore and design a bus matrix

need to manually specify topology, arbitration scheme, memory mapping 
too time consuming

Murali et al. [DATE 2005] proposed an automated application specific bus 
matrix synthesis approach

work focuses on topology synthesis only
Pasricha et al. [ASPDAC 2006] proposed an automated application specific 
bus matrix synthesis approach

synthesize BOTH topology and parameter values
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Related Work
Only a few approaches have attempted to simultaneously explore 
memory and communication subsystems

Grun et al. [DATE 2002] considered connectivity topology in conjunction with 
memory exploration

for simple processor-memory systems
Kim et al. [CODES+ISSS 2004] deal with bus topology and arbitration 
exploration

to determine best memory port-to-bus mapping
Other memory synthesis approaches use static estimates of communication

e.g. Knudsen et al. [CODES 1998]

However, these techniques only address a small part of the problem
don’t really focus on co-synthesis of memory and communication 
architectures

COSMECA is a novel co-synthesis approach which attempts to 
automatically

synthesize bus matrix topology AND parameter values
simultaneously determine a  mapping of data to physical memories while 
also deciding number, size, ports and type of memories
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COSMECA Co-Synthesis Flow
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COSMECA Co-Synthesis Flow
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Communication Parameter Constraint Set (Ψ)

To ensure that our approach generates realistic BA 

Constraints are in the form of a discrete set of valid 
values for BA parameters to be synthesized

- e.g. bus speeds which are multiples of 33Mhz, upto a max.
of 166Mhz, for a subsystem

Allows designer to bias the synthesis process based on 
knowledge of the design and technology being targeted
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COSMECA Co-Synthesis Flow
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Branch and Bound Clustering Algorithm
Goal: cluster slave modules to minimize matrix cost

Start by clustering two slave clusters at a time
Initially, each slave cluster has only one slave

However, the total number of clustering configurations 
possible for n slaves is (n! x (n-1)!)/2(n-1)

Extremely large number for even medium sized SoCs!

Solution: use a Bounding function for pruning
Called after every clustering operation
Uses lookup table to discard duplicate clustering ops
Discards non-beneficial clustering (i.e. no savings in no. of busses)
Discards incompatible clustering 

e.g. mergers of busses with conflicting bus speeds
Discards clustering which violates b/w requirements
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COSMECA Co-Synthesis Flow
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Case Studies

To evaluate effectiveness of our co-synthesis approach, we 
applied it to 4 MPSoC applications from networking domain

PYTHON, SIRIUS – variants of existing industrial strength applications
VIPER2, HNET8 – larger systems derived from next-gen MPSoCs

Number of cores in MPSoC applications

Applications Processors Masters Slaves

PYTHON 2 3 8
SIRIUS 3 5 10
VIPER2 5 7 14
HNET8 8 13 17
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CTG for SIRIUS MPSoC
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SIRIUS MPSoC Design Goals and Constraints
Design Goal: Throughput Constraint Paths (TCPs)

Communication Parameter Constraint Set

IP cores in Throughput Constraint Path (TCP) TCP constraint

µP1, VM3, VM4, DMA, VM16, VM17, VM18 640 Mbps
µP1, VM5, VM6, VM14, VM15, DMA, Network I/F2 480 Mbps
µP2, Network I/F1, VM8, VM9 5.2 Gbps
µP2, VM10,VM11,VM12, DMA, Network I/F3 1.4 Gbps
ASIC1, µP3, VM16, VM17, VM18, Acc1, VM13, Network I/F2 240 Mbps
µP3, DMA , Network I/F3, VM13 2.8 Gbps

Set Values
bus speed 25, 50, 100, 200, 300, 400
arbitration strategy static, RR, TDMA/RR
OO buffer size 1 – 8 
mem mapping VM16,VM17=>DRAM; VM1,VM2=>EEPROM

Target bus matrix architecture: AMBA3 AXI bus matrix
Memory Area Constraint: 225 mm2
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SIRIUS Synthesized Output
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Memory Area : 219.42 mm2

Result obtained with COSMECA has 25% fewer busses and 
21% less memory area compared to traditional approach
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Solution Tradeoffs for SIRIUS
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COSMECA allows designer to select a solution having the 
desired combination of number of busses and memory area

variation in memory area and number of busses for the 
ten best solutions (N=10)
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Bus Matrix Density Comparison 
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Memory Area Comparison
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compared to the traditional approach
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Conclusion
We presented an approach for the automated co-
synthesis of memory and communication architectures 
(COSMECA)

COSMECA couples the decision making process during 
memory and communication architecture synthesis, to 
generate better solutions

lower number of busses
lower memory area
lower cost

Results of applying COSMECA to 4 industrial strength 
MPSoC applications indicate a saving of

upto 40% in number of busses, and
upto 29% in memory area 
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Future Work
Incorporating cache customization in the memory synthesis 
sub-framework

Crossbar/matrix generation for STBus, CoreConnect 
standards, in the communication architecture synthesis sub-
framework

Incorporating power as another metric to guide COSMECA 
co-synthesis methodology
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Publications, etc:
http://www.cecs.uci.edu/~aces

Thank you!

More Information
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