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Overview 

• introduction – performance models and applications in 
embedded systems

• specific MpSoC challenges

• extending formal analysis beyond traditional process-to-
process communication

• example 

• conclusion
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Introduction

• formal embedded system platform analysis and optimization 

– based on abstract formal system models that describe platform 
load and activities 
(task activation and communication frequency, execution times,...)

– originally developed in the context of schedulability analysis

– alternative or complement to simulation

• different mathematical formalisms 

– FSM networks (timed automata)

– systems of equations for task response times 
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Performance models and applications

• formal performance model application

– can be used in early design stages (no executables)

– can determine design robustness and sensitivity to changes 
or inaccurate estimations

– fast – applicable to optimization

– supports IP component integration from different sources

• different formal models

– simple load models (average case)

– worst case models  

– statistical models
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Worst case vs. statistical models

• worst case models 

– well established formal semantics (schedulability analysis)

– composition of worst case component models well understood -
new generation of tools for compositional analysis

– can be improved considering execution scenarios (system 
modes - AADL)

– currently used for predictable system composition (automotive) 

• statistical models

– potentially higher system utilization

– derivation of reliable statistical execution models and their 
composition very difficult (data dependencies) and not fully 
understood

– more research needed
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Application example: Automotive

• non-functional dependencies of different subsystems –
problem grows with system size
(e.g. networks replacing buses)
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problem grows with system size
(e.g. networks replacing buses)
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Worst case design for automotive systems 

• established worst case design for systems integration 

– development of predictable architectures + software + analysis 
e.g. by Volcano (Volvo) or LiveDevices (ETAS)

– communication parameters (e.g. priorities) part of supplier –
OEM agreement 

– Time Triggered Architecture

• trend towards heterogeneous networked architectures with 
different scheduling (FlexRay, MOST) and flexible mapping 
requires new approaches

– software standards

– new analysis and optimization
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Compositional analysis

• subsystems coupled by streams

• coupling corresponds to 
event propagation

• Tools, e.g., from ETH Zürich and 
TU Braunschweig (SymTA/S)
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Tool SymTA/S

• commericalized by start-up  www.symtavision.com

• used e.g. by several customers for automotive systems 
optimization (incl. robustness optimization, planning of 
upgrades, ...)  
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From distributed systems to MpSoCs 1/2

• distributed embedded systems

– local computation and memory resources 

– network mainly used for process communication

– simple communication model (read at process start, write in the end)

– simple activation models (time or event triggered)
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From distributed systems to MpSoCs 2/2

• on-chip memory 
important cost factor

• larger memories off-chip

• data and program memory accesses on same network as task 
communication - more complex traffic
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MpSoC process execution
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Memory transactions

+ individual transactions can already be modeled in SymTA/S
(like in other tools, e.g. MAST)

+ no. of transaction can usually be bounded

– transaction distances are processor and path (i.e. data) 
dependent – difficult to identify

+ cache accesses can usually be bounded

– caches further “distort” access patterns 
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Memory transaction modeling alternatives 1/2

• single transaction at-a-time

– straightforward approach

– worst case timing per access

– overestimation of real bus and memory timing  
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Memory transaction modeling alternatives 2/2

• combined analysis of all process memory transactions 

– add all delays that can occur during all transactions of a 
process in the worst case

– more realistic bus and memory timing  
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Example: periodic process system

• process P0: tperiod = 1000, tjitter = 0, 

– 10 memory accesses: tbus = 2, tmem= 1

• process P1: tperiod = 100, tjitter = 0, tbus = 2, tmem= 1 (write only)

• process P2: tperiod = 100, tjitter = 0..1000 (Burst), tbus = 5, tmem= 3 (write 
only)
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Single transaction vs. combined analysis
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Conclusion

• formal performance analysis and optimization are gaining 
momentum in distributed embedded system design

• worst case design successfully used for predictable and 
robust systems integration – supported by tools

• more complex behavior of MpSoC due to conflicting task 
communication and memory access

• new technique presented to more efficiently include 
memory access in formal analysis 
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