
© R. Ernst, TU Braunschweig, 2006 1

Formal performance analysis
- from networked systems to MpSoC

R. Ernst

TU Braunschweig

© R. Ernst, TU Braunschweig, 2006 2

Overview

• introduction – performance models and applications in
embedded systems

• specific MpSoC challenges

• extending formal analysis beyond traditional process-to-
process communication

• example

• conclusion

© R. Ernst, TU Braunschweig, 2006 3

Introduction

• formal embedded system platform analysis and optimization

– based on abstract formal system models that describe platform
load and activities
(task activation and communication frequency, execution times,...)

– originally developed in the context of schedulability analysis

– alternative or complement to simulation

• different mathematical formalisms

– FSM networks (timed automata)

– systems of equations for task response times

© R. Ernst, TU Braunschweig, 2006 4

Performance models and applications

• formal performance model application

– can be used in early design stages (no executables)

– can determine design robustness and sensitivity to changes
or inaccurate estimations

– fast – applicable to optimization

– supports IP component integration from different sources

• different formal models

– simple load models (average case)

– worst case models

– statistical models

© R. Ernst, TU Braunschweig, 2006 5

Worst case vs. statistical models

• worst case models

– well established formal semantics (schedulability analysis)

– composition of worst case component models well understood -
new generation of tools for compositional analysis

– can be improved considering execution scenarios (system
modes - AADL)

– currently used for predictable system composition (automotive)

• statistical models

– potentially higher system utilization

– derivation of reliable statistical execution models and their
composition very difficult (data dependencies) and not fully
understood

– more research needed

© R. Ernst, TU Braunschweig, 2006 6

Application example: Automotive

• non-functional dependencies of different subsystems –
problem grows with system size
(e.g. networks replacing buses)

ACC

ABS
ESP

ASR

engine
control powertrain

control

GatewayGateway

SG SG SG SG

SG SG SG SG

SG

SG SG SG SG

SG SG SG SG

SG SG SG SG

SG SG SG SG

SG: Steuergerät
GatewayGateway

SG SG SG SG

SG SG SG SG

SG

SG SG SG SG

SG SG SG SG

SG SG SG SG

SG SG SG SG

SG: SteuergerätECU

CAN
power-
train

CAN
comfort

CAN
enter-
tainm.

• non-functional dependencies of different subsystems –
problem grows with system size
(e.g. networks replacing buses)

© R. Ernst, TU Braunschweig, 2006 7

Worst case design for automotive systems

• established worst case design for systems integration

– development of predictable architectures + software + analysis
e.g. by Volcano (Volvo) or LiveDevices (ETAS)

– communication parameters (e.g. priorities) part of supplier –
OEM agreement

– Time Triggered Architecture

• trend towards heterogeneous networked architectures with
different scheduling (FlexRay, MOST) and flexible mapping
requires new approaches

– software standards

– new analysis and optimization

© R. Ernst, TU Braunschweig, 2006 8

Compositional analysis

• subsystems coupled by streams

• coupling corresponds to
event propagation

• Tools, e.g., from ETH Zürich and
TU Braunschweig (SymTA/S)

environment model

local analysis

derive output event model

map to input event model

until convergence or non-schedulability

comp1

P2

P1

comp2

P4

P3

comp1

P2

P1

comp1

P2

P1

comp2

P4

P3

© R. Ernst, TU Braunschweig, 2006 9

Tool SymTA/S

• commericalized by start-up www.symtavision.com

• used e.g. by several customers for automotive systems
optimization (incl. robustness optimization, planning of
upgrades, ...)

formal
compositional

analysis

formal
compositional

analysis

Optimization
(Exploration)

Optimization
(Exploration)

Sensitivity
analysis

Sensitivity
analysis

© R. Ernst, TU Braunschweig, 2006 10

From distributed systems to MpSoCs 1/2

• distributed embedded systems

– local computation and memory resources

– network mainly used for process communication

– simple communication model (read at process start, write in the end)

– simple activation models (time or event triggered)

CPU1 HW

Mem

Sens CPU2

Mem

P1 P2

© R. Ernst, TU Braunschweig, 2006 11

From distributed systems to MpSoCs 2/2

• on-chip memory
important cost factor

• larger memories off-chip

• data and program memory accesses on same network as task
communication - more complex traffic

CPU1 CPU 3

Mem

Shared Memory

HW
CPU2

Mem

P1 P2
MpSoC

© R. Ernst, TU Braunschweig, 2006 12

MpSoC process execution

classical
process
model

read all data

output all data

read data

output data

process
model
w/ memory
access

t

t

memory
transaction

© R. Ernst, TU Braunschweig, 2006 13

Memory transactions

+ individual transactions can already be modeled in SymTA/S
(like in other tools, e.g. MAST)

+ no. of transaction can usually be bounded

– transaction distances are processor and path (i.e. data)
dependent – difficult to identify

+ cache accesses can usually be bounded

– caches further “distort” access patterns

© R. Ernst, TU Braunschweig, 2006 14

Memory transaction modeling alternatives 1/2

• single transaction at-a-time

– straightforward approach

– worst case timing per access

– overestimation of real bus and memory timing

process

other activity
on bus

analysis
result

tperiod

© R. Ernst, TU Braunschweig, 2006 15

Memory transaction modeling alternatives 2/2

• combined analysis of all process memory transactions

– add all delays that can occur during all transactions of a
process in the worst case

– more realistic bus and memory timing

process

other activity
on bus

combined
analysis
result

tperiod

© R. Ernst, TU Braunschweig, 2006 16

Example: periodic process system

• process P0: tperiod = 1000, tjitter = 0,

– 10 memory accesses: tbus = 2, tmem= 1

• process P1: tperiod = 100, tjitter = 0, tbus = 2, tmem= 1 (write only)

• process P2: tperiod = 100, tjitter = 0..1000 (Burst), tbus = 5, tmem= 3 (write
only)

CPU1 NW
interface

Mem

Shared Memory

DMA 1

P0 P1 P2
MpSoC

Traffic Shaper

© R. Ernst, TU Braunschweig, 2006 17

Single transaction vs. combined analysis

0

500

1000

1500

2000

2500

3000

0 50 100 150 200 250 300 350 400 450 500

Jitter (P2)

W
o

rs
t

C
a

s
e

 R
e

s
p

o
n

s
e

 T
im

e
 P

0

single transaction
analyis

combined analyis

© R. Ernst, TU Braunschweig, 2006 18

0

200

400

600

800

1000

1200

1400

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00

Jitter of Interference

R
e

s
p

o
n

s
e

 T
im

e
s

P0 WCRT - No Shaping

P2 WCRT - no Shaping

P0 WCRT - Shaping

P2 End-to-End-Latency -
Shaping

Traffic shaping effect

© R. Ernst, TU Braunschweig, 2006 20

Conclusion

• formal performance analysis and optimization are gaining
momentum in distributed embedded system design

• worst case design successfully used for predictable and
robust systems integration – supported by tools

• more complex behavior of MpSoC due to conflicting task
communication and memory access

• new technique presented to more efficiently include
memory access in formal analysis

© R. Ernst, TU Braunschweig, 2006 21

Acknowledgement - Literature

• Literature can be found

– www.spi-project.org

– www.symtavision.com

• The experiments and some of the slide figures have been
provided by Simon Schliecker

