
11

Scalable Processing
through

Software Threading

John Goodacre
Program Manager - Multiprocessing

ARM Ltd

MPSoc’06
6th International Forum on

Application-Specific Multi-Processor SoC

14-18th August 2006

222

Scaling Performance
Many different approaches used in embedded

Higher MHz along with more complex processor designs
Superscalar, OoO, SMT, finegrain threading, course threading etc

Heterogeneous multiprocessors with individual specialized processors
doing specialized asymmetric tasks
Homogeneous multiprocessors with generalized processors sharing
general task workloads (typically symmetrically)
Combination and various mixes of the above

Key challenge: It’s really a software problem
There are various examples of failed multiprocessing designs due to
disparity between the ‘ideal’ hardware design and what the software
programmer could actually use

This mini-keynote looks at the “threaded-software” paradigm

333

Recap: Meaning of “Threaded-software”
Threading is an approach used by the software programmer
to represent concurrent activities

The OS/RTOS can sometimes map independent applications/process
to a thread
Sometimes a runtime library exposes an API to the programmer
…and sometimes the hardware requires the programmer to explicitly
partition and assign the thread to specific execution context

Code Data

Registers Stack

Single execution context

Program
Counter (PC) ->

Code Data

Multiple execution context

Registers
Stack

PC ->

Single Threaded Process Multiple Threaded Process

Registers
Stack

PC ->

Registers
Stack

PC ->

444

How do “threads” offer scalability?
Multiple threads run concurrently across multiple processors

More processor units equates to more performance
Can scale beyond what’s realistic of any form of single processor
Achieves higher performance in less power and less area
Processors may be the same or different architecture / ISA / pipeline etc

If the same, OS/RTOS can typically help assign threads to processors
If different, the designer/programmer typically needs to work it out!

Multiple threads sharing the resources of a single processor
Demonstrated by various forms of hardware multi-threading
Can only scale as far as a well utilized single processor, overall limited by
design complexity and power consumption
Performance is limited by the theoretical maximum uniprocessor performance
Suffers from high power since its still a complex uniprocessor
Due to shared resources, programmer needs to work out how threads interact

555

Potential problems with threading
Determinism & Predictability

Does a thread always do the same thing or will it be influenced by
another thread ?
Can your software manage determinism through synchronization and
explicit control over where and how a thread executes?
…or will data dependent access patterns on another thread
fundamentally change the predictability of your first thread?

In many cases can you utilize enough concurrent execution
contexts simply with multi-tasking of independent activities

But watch out for hardware level contention between threads that will
limit realized throughput and require additional software complexity

The ARM MPCore design allows threads to run independently
with unification addressed within the processor macroblock

666

Measuring multi-core power advantage

Lower power in dual-CPU than single-CPU at same MHz
Reduction in context switching
Increase in cache effectiveness

Single-CPU, (ARM MPCore)

Dual-CPU (using same MHz, same voltage)

Reduced MHz allow for lower supply voltage
which enables more than 50% energy save

Using a single CPU design point requires in this
example 1 CPU @ 260MHz, consuming ~160mW

For a given workload requirement

For the same workload level
This is a single threaded application,
concurrency is with the operating system.

Unused processor are ‘turned off’
and isolated from OS (HOTPLUG)

Once you have threaded code, MP offers more performance at lower MHz and without
suffering from the cost of memory speed disparity and associated inefficiencies

777

Realization of concurrency
Inherent within the
applications and
operating system
Video Playback
Browser
User Interface (X11)
Audio Playback
Other user applicationsEvaluation silicon of ARM11 MPCore

Quad-core 32K ID with 1MB L2
264MHz CPU (and 22MHz SoC!)

Linux 2.6.15 from kernel.org
X11, Window manager, apps all from
Debian without change

Concurrency inherent in OS and multi-
tasking of applications

888

Threaded software (and multi-tasking)
No modification
of Linux
applications
Noticeably
more
responsive
interface
Power
consumed
directly related
to CPU activity
Rich
application
experience
Scaleable and
low power
solution

ARM11 MPCore - Linux 2.6 X11 Multimedia Desktop

999

Summary
Threaded software is a fairly natural approach for software programmers

to express concurrent execution

There are a lot of different hardware architectures and multi-processor
designs claiming they support threaded software

! Designer Beware !

All (software) Threads Are Not Equal

Hardware needs to map as close as possible to the
general threaded software paradigm

Specialized cores are often the most power/area efficient solution to a specific task
Independent (multiple) processors provide

comparable levels of determinism as single CPU

