The Use Of Virtual Platforms In MP-SoC Design

Eshel Haritan, VP Engineering CoWare Inc.
MPSoC 2006

MPSoC

“ Is MP SoC design happening? The CELL

“ Consumer Electronics — Complexity
* Cost of ASIC — Increased SW Content
~ Power consumption — MP SoC

and it comes in many flavors

Agenda

“ MPSoC Solution Space
* Virtual HW Platforms

What are Virtual Platforms?
Virtual Platform usage for Architectural Exploration
Virtual Platform usage for SW development

“ Requirements from Virtual Platforms
“ The ESL Solution Pyramid

Solution Space: HW Implementation

e Limited reuse
e High performance » No flexibility
e Low power » separate design
for each platform

Processor HW accelerators Memory

el el

ASIC + Processor for global control

Solution Space: Programmable Accelerators

e high performance SW — Mapping high design effort
e high flexibility e Low SW development

e hi i iati roductivit
high differentiation 1 Task 2/3 Task 3/5/6/7 P y

Accelerator Accelerator Accelerator Task &
Processor

Hbmogeneous MP-SoC Mésh

> Design flexibility e Difficult to program
: _ - e Communication
: ge:jjse C1:Ior multiple apps SW Mappmg becomes bottleneck
edundancy e Load Balancing
» High chip/royalty cost

Interconnect
Processor Memory

Homogeneous Multi-Processor Mesh

Solution Space: Heterogeneous SoC

* Reuse of legacy design SW - Mapping
e Reuse of legacy SW

Task 1
HW Accelerator Task 3/4/5
Task 2 Accelerator

Accelerator

Task 6/7
Accelerator

Heterogeneous Multi-Processor SoC

e L oad balancing
e Memory sub-system design

Task 8
Processor
+ Ctrl

The ESW View

User Interface, User level functions

LLarge ESW. stack =10 Million lines of: code
€, C++4, Java

Soit real time - Defined by User perception
Cache, MMU

Use generic components for data mevement
Generic bus arbitration; + peripherals

User-Level Functions
(Applications, Ul)

Middleware (Algorithm)

“Board Support
Package”

Algoerthm rich
SmalllESW stack™ =1 Millien lines; off code
C, C++ (no Java), or assembly, or Matlalh
Hard Real ljiime

Cache off;, MMU offif
Smart DMA; guaranteed Quality of Service
Data locality
NoC; guaranteed QoS predictable latency:
Dedicated communication channels

Hardware alstraction: Layer + OS Supporit
Thin layer —100K lines; off code

C withi inline Assembly, mayhe C++
Accurate Response Time

What is a Virtual HW Platform?

A SW model of the SoC HW Virtual HW Platform

Processors, accelerators,
peripherals and interconnect

HDS - HAL, Drivers, O.S., I/O

Enables architecture
exploration and optimization

Enables ESW development,
debugging and optimization

Different abstraction levels for
different use models

Virtual HW Platform Value

"~ Fast

~ Allows accuracy-speed trade offs
* Flexible

~ Cost effective

~ Scaleable

“ Observable and Controllable

~ Available early in the design cycle

Virtual HW Platform Value

Emulation OR Development
rm FPGA board board

HW Arch | HW (RTL) RTL2GDSII
Design &

4m 6m

» Early SW Development
* Real HW and SW Co-Design

Virtual HW Platform for Architecture
Exploration

Product
Specification

P Y

Traffic
Gene!’ator Transactor - Transactor -
Instruction [—

Accurate
Processor

Transactor ~

Baseband
Transactor ~ ' Transactor -| Accelerator
(SPD)

Custom
— Transactor ~| Processor

(PD)

Platform Architec

RME 86406 8,536 3,30:05

Furction Loa

Slelb ATe06 974eb 9,766 S,8evlh (ns

J—— '
id 3
i for e

n gecode e

24

| 7| "lcdput i

ro0ess 806

it Jpag
11, jpeq ptr
ol Lips e

I i M
[T proves orers

EECECEEEER

4! cinresssl 6

nalloc

Hoao Alloe

[2

GR6 3545 9656 86605
I

Furctior Trace
Slelh 0005 96 7606 9,Bef (s
I I

)
8

(18| _eop TecSize

H

OCP

Bus

" ARM926

Transaction Trace for bus ocp_db

Saa rume Sl s St ™

File Goto Search Zoom Settings Help

|- [pte] >+

B EEEEE

Transaction Trace for bus ocp db

id name 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 8O time [ns]
L L L 1 1 I 1 L 1 5, L 1 L I L 1 1
nsl. Master_Port | Master Port ‘ Master Port | | Master_Port ‘
bhus. SlaveP [81lavep [slaver | | slaveP |
nsl Master Port [Master B Master_Port | Master_Port | [Master
bus. MasterP [Master? [Master| Masterr | [MasterP | MasterP [MasterP [Mas

511 slave_Port

Slawve P [Slave P

Slave Port

sys. ms0. Master_Port

| Master_Port |

Master Port

sys. ms0. Master Port

[Master_Port |

1 1
2 |z
ERE
4 |4
5 |5 |10 slave_port
G
7|7
g |8
RIE

sys. msl.Master Port

| Master_Poct

‘ ‘ Master_Port ‘ |Master

msl.Master Port

Maste

ort

W= I

=

|[56.3438 , 0]

| 203 pm

BUFFER

OCP TL2

I need to constantly read and decode
H.264 bitstreams. Virtual Platform helped
me to find out that pixel data can be best

transferred via DMAs from SRAMs.
Control data can be directly put into the
shared memory via my bus interface.

SRAM
Output

Pixel Data

I am responsible for the control and
synchronization of all cores. | do not
require fast access to the pixel data.

I need fast an parallel access to reference

and predicted frame data. Early

architecture exploration helped me to find
out that two SRAMs with DMA removes

this data bottleneck.

SRAM
Predicted
Pixels

Memory
Controller

Motion

Reference
Pixels Estimation
Accelerator

The access to the shared e.g. control and

parameter data eases programming of

this accelerator.

Input
Macroblock

I need to process the entire
uncompressed 6MB frame 30 times per
second! Architecture exploration helped
me find out that DMA assisted input and

output Macroblock memories are the best
option.

SRAM (Deblocking\

Filter

Accelerator

Virtual HW Platform for ESW Development

Product .
Specification Virtual Platform

7\ W

Instruction
Accurate }— Transactor 7 I— Transactor

ISS
nstruction |

Memory

Baseband |—— Transactor - -| Memory
1— Transactor
Sub System Controller

Baseband
DMA — Transactor T I Transactor Accelerator
(SPD)

Custom
Transactor ~| Processor

(PD)

Display

Virtual Cell Phone

App’s App's App’s
SW SW SW

SW

Development
Tools

gdb
DDD

P

Librar) } .
ey System Simulation

Platform Architect
Simulator

Host HW

(PC, EWS)

SVv.'API

AP-RTOS
Ext
1/0

Display

Cell Phone HW

Virtual HW Platform for ESW development

Fl\e Simulation Debug View Windows Heln

m‘@ D=
- %]

QMandel

Address

= EEER IO

{0=zc00207e4) Ek Core

=5 =]
[Riwovie el » B

File Options Help - Al ARMIZE

JSymhols]Address

JInstructan JDlsassembly

==

- g LATAPIHOs
- g i_Clock,
[+ g i_CwrDisplayController
[+ g i_Cwr TouchS creenContr.
g DTOM_DATA, shub
- g _ITCM_DATA_stub
[+ g i_PYMemany
- g _RAM
- g i_ResetToggle
[+ g i_Timerd
[+ g i_uartl
- g _uart]
- g i_uart2
v g VT

Idle: 56,05 | Press:0.0s Interrunted

B C:\WP\PDA . windows\pdaterm\windows\p daterm.exe

kjournald starting. Commit interval 5 seconds
[EXT3—fg: wecovery complete.

[EXT3—fs: mounted filesystem with ordered data mode.
UFS: Mounted root C(extd filesystem? readonly.
Mounted devfs on sdev

Freeing init memory: 26K

INIT: version 2.86 hooting

Setting up device links for deufs: done
fsck 1.35 (28-Feh—-2884)

e2fsck 1.35 (28-Feh—2084)
Ldevs/mtdblocksB: clean. 268615744 files.
lount >

[EXT3 FS on mtdbhlock®. int

Thu Apr 21 19:57:808 UTG 23.5
INIT: Entering »unlevel:
2tarting syslogd-klogd: done

al journal

Familiar Linux v@.8.2 h3908 tts-/@

(h3900 login: root
rootPh3908: “# stty onlce
rootPh3?988:"# ./opie +[Jstart
Starting Opie in 5 seconds... press key to interrupt.
You seem to already have a shomesroot/Applications directory.
fizzuming it is the Opie Applications directory. Exiting.
Starting Opie
oot Ch3208: ﬂ "ODevice(> - found ‘Hardware H
unknown hardware - using default.
icreating global configuration instance.
Config<>
QDevice reports transformation to he @
setting QWS_DISPLAY to ‘Tpanﬂfopmed RotB
() - terminal specification is '2’
t_init(> — active vt is #1. switching to “#2 as regquested. ..
WARNING: preferred kevboard is Multikey
WARMING: Found Rpplet' libbhatteryapplet.so
: OTaskbarf Interface()

PDA-Sim

4549362968 blocks <check after

Virkual PlatForm, B C:ivPiPDA. win

[c00207d4]
[c00207d8]
[c00207dc]
[c00207=0]
[c00207e4]
[c00207=8]
[cOD207ec]
[c00207£0]
[c00207£4]
[cO0207£8]
[c00207fc]
[=0020800]
[c0020804]
[c0020808]
[c002080c]
[=0020810]
[cO0020814]
[cO020818]
[c002081c]
[c0020820]
[c0020824]
[cO020828]
[c002082c]
[c0020830]
0834]

ﬂﬂ 0838]
0&3c]
0840]
n0g44]
048]
0g4c]
0850]
0g54]
0858]
085c]
0860]
0g64]
0868]
0g6c]
0a870]
0874]
0g878]
087c]
0g80]
0g84]

=885001c
=9456000
=597000c
=sll0f1n
=3alb000
=321£013
=1al00oz
=1a0100d
=b001=18
=lalf6ad
=1a09689
=3al8000
=alingza
e28lcllc
=592305c
sBackffl
=5b2e018
eleldalf
=5043003
esl36f10
=992aff0
=lal00on
=lal0oon
=laldoon
=1la0000n
=lal0oon
=lal00on
=321£093
=5991000
=31100££
1a000006
=59d1048
=5bdeld4
eleff00l
=95d7ffe
=lal0oon
=28dd00c
=1b0f00=
=5ad00os
=3110004
1a000006
=3110003
Oa000009
=lalinod
=lalz00s

STHIA RE. 0Ox001
STHDE RS, Ox600
LDE RO. [R7. +#
MCR plS, #0.
MOV R11, #0
MSR CPSE_c .
MOV RO. R2
MOV R1. R13
BL #0xc002805c
MOV R9, RI3 ., L
MOV RS. R9 LS
MOV RE. #0

B #0=c0020898
ADD R12, E1.
LLE R3. [E2Z.
STHIA R1z2!. O=e6
LDE R6, [R2. +#
MVN R4, #15 . #
STR R3. [Re. —-#
MCR plS, #0.
LDHIE R2, Oxaff
MOV RO. RO
MO¥ RO. RO
MOV RO. RO
MOV RO. RO
MO¥ RO. RO
MOV RO. RO
MSR CPSE_c .
IDE R1. [R9.
TST R1, #25%
BHE #0=xc002086c
LDE R1. [R13. +
LDE R14, [R13,
MSRE SPSE_fsxc .
LDMDE R13, 0O=7f
MO¥ RO. RO

ADD R13, R13, &
MOVS R15. R14
STE RO, [R13. +
TST R1. #4

BHE #0=cO020894
TST R1. #3

BEQ #0xc00208a8
MOV RO, R13

MOV RZ. RE

#1

#2
+#

#1
+#

RO,

R6,

(o}
0 o-
12]
cl, 0. #0

9

SR o#13
L #13

2

92]

f£0

247!

20

3]

c3, 0. #0
il

47
0]

#721]
+#687]!
Rl

fe 7
1z

#8711

BiEE

jp II@m

IVahe]

== jnztruction_rate
e e ay_ingtiuction_rate

11168004
E0320748

jD ||mm

- 2] p_BIGENDINIT
- &l p BIGENDOUT
- 2 p_DHCLKEN
28 p_DRSIZE
2 p IHCLKEN
- 2] p_INIT Rl
- 2] p_IRSIZE
-2 p_rFIQ
-2 p niRQ
-2 p nRESET
0 STANDEYWF
2 p_VINITHI

|Iwm ‘Vahe |

=-E=R 042377

—RA0] 0277
~=R[1] 0x33f30
~=R[2] 0=401073d8
~==R[3] 0=E0000010
~==R[4] Dafffffe
~==R[G] Oxc28b3fec

—RI5] 0:0
- =R[7] Oxc01e5010
- =R[8] 00
~=R[q] 043
- = R[10] 0x401b1000
~==R[11] Orbefff=f4

=R[12]0x401bz2728

=RM3] Oxbeflfd70

ernel

e UsSe

DIELRM

. reload

COMMAND' or

' BLOCENAME

COMMAND'

] PDA GUI vD.2

-

Stoppers: wpa (D|0:13:11.832 953 510 000

06 Q) @ WAL D 61 ST 2D B LG vt

Virtual Platform — What is Required?

Ultra fast processor simulator — ISS
Accuracy-speed trade-offs
Library of fast processor models

Explore different communication paradigms
Strong analysis solutions
Library of communication protocols

Integrate DSP algorithm
Library of popular Wireless and MM standards

Ultra fast platform
Accuracy-speed trade-offs
Multi core and platform debugging

Standard based

Why Standards Based?

Device Manufacturer

Develop your own

CWare

Platform Creator
Processor |
Designer

Signal
Processor
Designer

Model
Designer
IP Providers
MES ARM
HI5P

Solutions Pyramid

ESL
Assessment

ESL
Methodology
Transition

Vertical Markets

Video Office Wireless

Product Platform Product Platform
Capture & Analysis for Capture & Distribution
Architecture Development for SW Development

Processor Interconnect Peripheral
Modeling Modeling & Design Modeling

Custom Algorithm Block IP Design and
Processor Design Design Verification

e Custom processor design

e Complex algorithm design

e SOC architecture exploration
=St e SoC verification

Assessment

ESL e Modeling for speed

Methodology

Transition e Virtual Platforms for ESW

Vertical Markets

Video Office Wireless

Integrated solution Pyramid

Product Platform Product Platform
Capture & Analysis for Capture & Distribution
Architecture Development for SW Development

Processor Interconnect Peripheral
Modeling Modeling & Design Modeling

Custom Algorithm Block IP Design and
Processor Design Design Verification

So what’s the next level of abstraction?

Processor is the nand gate

of the future Transactor
Results Level
(transistors per VQ_,:C)\
engineering effort)
—EHEE

1985 Register transfer level

HI- Gatellogic level

1978 »10-100X on Simulation
- »10-100X on design
& Transistor level productivity

eImpose design restrictions

Effort

22

The Next Level Challenge

The next level is (maybe):
Processors and HW accelerators
SW tasks running on these processors
Transaction level modeling to model communication

What are the design restrictions we need to impose to gain
100X productivity?...and what are the benefits to the users?

Processors
Simplify? No Cache? No MMU? Speculative execution? Branch
prediction?

SW tasks
Threads? Locks? R/W to/from ports only?

Programming models to abstract the SoC (message passing, SMP,
streaming)?

What do we do with all the legacy code?

Communication
Memory sub system design, NoC design

