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MPSoC

“ Is MP SoC design happening? The CELL

“ Consumer Electronics — Complexity
* Cost of ASIC — Increased SW Content
~ Power consumption — MP SoC

and it comes in many flavors




Agenda

“ MPSoC Solution Space
* Virtual HW Platforms

What are Virtual Platforms?
Virtual Platform usage for Architectural Exploration
Virtual Platform usage for SW development

“ Requirements from Virtual Platforms
“ The ESL Solution Pyramid




Solution Space: HW Implementation

e Limited reuse
e High performance » No flexibility
e Low power » separate design
for each platform

Processor HW accelerators Memory

el el

ASIC + Processor for global control




Solution Space: Programmable Accelerators

e high performance SW — Mapping  high design effort
e high flexibility e Low SW development

e hi i iati roductivit
high differentiation 1 Task 2/3 Task 3/5/6/7 P y

Accelerator Accelerator Accelerator Task &
Processor




Hbmogeneous MP-SoC Mésh

> Design flexibility e Difficult to program
: _ - e Communication
: ge:jjse C1:Ior multiple apps SW Mappmg becomes bottleneck
edundancy e Load Balancing
» High chip/royalty cost

Interconnect
Processor Memory

Homogeneous Multi-Processor Mesh




Solution Space: Heterogeneous SoC

* Reuse of legacy design SW - Mapping
e Reuse of legacy SW

Task 1
HW Accelerator Task 3/4/5
Task 2 Accelerator

Accelerator

Task 6/7
Accelerator

Heterogeneous Multi-Processor SoC

e L oad balancing
e Memory sub-system design

Task 8
Processor
+ Ctrl




The ESW View

User Interface, User level functions

LLarge ESW. stack =10 Million lines of: code
€, C++4, Java

Soit real time - Defined by User perception
Cache, MMU

Use generic components for data mevement
Generic bus arbitration; + peripherals

User-Level Functions
(Applications, Ul)

Middleware (Algorithm)

“Board Support
Package”

Algoerthm rich
SmalllESW stack™ =1 Millien lines; off code
C, C++ (no Java), or assembly, or Matlalh
Hard Real ljiime

Cache off;, MMU offif
Smart DMA; guaranteed Quality of Service
Data locality
NoC; guaranteed QoS predictable latency:
Dedicated communication channels

Hardware alstraction: Layer + OS Supporit
Thin layer —100K lines; off code

C withi inline Assembly, mayhe C++
Accurate Response Time




What is a Virtual HW Platform?

A SW model of the SoC HW Virtual HW Platform

Processors, accelerators,
peripherals and interconnect

HDS - HAL, Drivers, O.S., I/O

Enables architecture
exploration and optimization

Enables ESW development,
debugging and optimization

Different abstraction levels for
different use models




Virtual HW Platform Value

"~ Fast

~ Allows accuracy-speed trade offs
* Flexible

~ Cost effective

~ Scaleable

“ Observable and Controllable

~ Available early in the design cycle




Virtual HW Platform Value

Emulation OR Development
rm FPGA board board

HW Arch | HW (RTL) RTL2GDSII
Design &

4m 6m

» Early SW Development
* Real HW and SW Co-Design




Virtual HW Platform for Architecture
Exploration

Product
Specification

P Y

Traffic
Gene!’ator Transactor - Transactor -
Instruction [—

Accurate
Processor

Transactor ~

Baseband
Transactor ~ ' Transactor -| Accelerator
(SPD)

Custom
—  Transactor ~| Processor

(PD)
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I need to constantly read and decode
H.264 bitstreams. Virtual Platform helped
me to find out that pixel data can be best

transferred via DMAs from SRAMs.
Control data can be directly put into the
shared memory via my bus interface.

SRAM
Output

Pixel Data

I am responsible for the control and
synchronization of all cores. | do not
require fast access to the pixel data.

I need fast an parallel access to reference

and predicted frame data. Early

architecture exploration helped me to find
out that two SRAMs with DMA removes

this data bottleneck.

SRAM
Predicted
Pixels

Memory
Controller

Motion

Reference
Pixels Estimation
Accelerator

The access to the shared e.g. control and

parameter data eases programming of

this accelerator.

Input
Macroblock

I need to process the entire
uncompressed 6MB frame 30 times per
second! Architecture exploration helped
me find out that DMA assisted input and

output Macroblock memories are the best
option.

SRAM (Deblocking\

Filter

Accelerator




Virtual HW Platform for ESW Development

Product .
Specification Virtual Platform
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Display

Virtual Cell Phone
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SW

Development
Tools
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Virtual HW Platform for ESW development
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Virtual Platform — What is Required?

Ultra fast processor simulator — ISS
Accuracy-speed trade-offs
Library of fast processor models

Explore different communication paradigms
Strong analysis solutions
Library of communication protocols

Integrate DSP algorithm
Library of popular Wireless and MM standards

Ultra fast platform
Accuracy-speed trade-offs
Multi core and platform debugging

Standard based




Why Standards Based?

Device Manufacturer

Develop your own

CWare

Platform Creator
Processor |
Designer

Signal
Processor
Designer

Model
Designer
IP Providers
MES ARM
HI5P




Solutions Pyramid

ESL
Assessment

ESL
Methodology
Transition

Vertical Markets

Video Office Wireless

Product Platform Product Platform
Capture & Analysis for  Capture & Distribution
Architecture Development  for SW Development

Processor Interconnect Peripheral
Modeling Modeling & Design Modeling

Custom Algorithm Block IP Design and
Processor Design Design Verification




e Custom processor design

e Complex algorithm design

e SOC architecture exploration
=St e SoC verification

Assessment

ESL e Modeling for speed

Methodology

Transition e Virtual Platforms for ESW

Vertical Markets

Video Office Wireless

Integrated solution Pyramid

Product Platform Product Platform
Capture & Analysis for Capture & Distribution
Architecture Development for SW Development

Processor Interconnect Peripheral
Modeling Modeling & Design Modeling

Custom Algorithm Block IP Design and
Processor Design Design Verification




So what’s the next level of abstraction?

Processor is the nand gate

of the future Transactor
Results Level
(transistors per VQ_,:C)\
engineering effort)
—EHEE

1985 Register transfer level

HI- Gatellogic level

1978 »10-100X on Simulation
- »10-100X on design
& Transistor level productivity

eImpose design restrictions

Effort

22



The Next Level Challenge

The next level is (maybe):
Processors and HW accelerators
SW tasks running on these processors
Transaction level modeling to model communication

What are the design restrictions we need to impose to gain
100X productivity?...and what are the benefits to the users?

Processors
Simplify? No Cache? No MMU? Speculative execution? Branch
prediction?

SW tasks
Threads? Locks? R/W to/from ports only?

Programming models to abstract the SoC (message passing, SMP,
streaming)?

What do we do with all the legacy code?

Communication
Memory sub system design, NoC design




