
MPSoC: 15 Aug 2006 Empirical Architecture: Balancing Computation & Communication - Hellestrand & Abdallah 1

Empirical Architecture:
Balancing Computation and Communication

Graham Hellestrand, Ahmed Abdallah
MPSoC Workshop, Estes Park, Co, 15 Aug 2006

MPSoC: 15 Aug 2006 Empirical Architecture: Balancing Computation & Communication - Hellestrand & Abdallah 2

Systems
Architecture

Scope

Must be Pre-Silicon!

MPSoC: 15 Aug 2006 Empirical Architecture: Balancing Computation & Communication - Hellestrand & Abdallah 3

Architecture Incorporates the
Whole System

VaST

Software

DeviceDrivers

Operating

Systems

Middleware,

Comms

Appli-cations

Physic
al

RTL

Behav.
Platform

Hardware

Mechanical, Physical

Devices
Structures Sub-systems Systems

Architecture Buses

& Bridges

VPMs &

Peripheral

Devices

Virtu
al

Prototype

Evalu
ation,

Exploration

MPSoC: 15 Aug 2006 Empirical Architecture: Balancing Computation & Communication - Hellestrand & Abdallah 4

Empirical Architecture:
Its about Optimal System Specification

using Models

Virtual Prototypes

32-bit
MPU

RAM

Interrup
tControll
er

ROM
Bus Interface

Flash
DMA

InterruptTimer

General I/O
A2D Convert

Clock Gen.
Serial Comms

Virtual bus
Software

Specifications

Human
System Instantiator

Physical
Mechanical, RF, ..

Human
Respecifier

Physical Prototype
Asynch-Signal Response Latency

Po
we

r C
on

su
mp

tio
n

Sp
ee

d

1
234

5

MPSoC: 15 Aug 2006 Empirical Architecture: Balancing Computation & Communication - Hellestrand & Abdallah 5

Architecture
&

The Challenges of
Modeling

MPSoC: 15 Aug 2006 Empirical Architecture: Balancing Computation & Communication - Hellestrand & Abdallah 6

A Paradigm Industry System:
Virtual System Prototype (VSP)

of a 3G-Mobile Handset Development

Full System Simulation & Debugging
• 3 processors, 80 peripheral devices
• Typical performance 20+ MIP

I Q Signals

Virtual COM
Port

ARMARM
DebuggersDebuggers

DSPDSP
DebuggerDebugger

StdBus
Bridge

StdBus
Bridge

Memory
Block

Memory
Block

P1
 M

em
or

y

Memory
Block

Memory
Block

StdBus
Bridge

StdBus
Bridge

Arb. Ctrl
DRAM

Arb. Ctrl
DRAM

Memory
Block

Memory
Block

Memory
Block

Memory
Block

Sh
ar

ed

M
em

or
y

ARM1176 P1
Virtual Processor Model

ARM1176 P1
Virtual Processor Model

I CacheI Cache D CacheD Cache
StdBus I/FStdBus I/F StdBus I/FStdBus I/F

ARM1156 P2
Virtual Processor Model

ARM1156 P2
Virtual Processor Model

I CacheI Cache D CacheD Cache
StdBus I/FStdBus I/F StdBus I/FStdBus I/F

StarCore SC1400
Virtual Processor Model

StarCore SC1400
Virtual Processor Model

I CacheI Cache D CacheD Cache
StdBus I/FStdBus I/F StdBus I/FStdBus I/F

D ROM P ROM

StdBus
Bridge

StdBus
Bridge

UARTUART

TIMERTIMER

INTCINTC
P1 Devices

Console 1Console 1

A
H
B

Buses

StdBus
Bridge

StdBus
Bridge

UARTUART

TIMERTIMER

INTCINTC
P2 Devices

Console 2Console 2

P2
 M

em
or

y

MPSoC: 15 Aug 2006 Empirical Architecture: Balancing Computation & Communication - Hellestrand & Abdallah 7

MP Model Performance on Single Host
3x Closely Coupled (µP + I&D Cache) Models

Triple Processor VSP - Cached

0

10

20

30

40

50

60

1 2 3

Number of Processors

Ef
fe

ct
iv

e
M

IP
S

No. of
Processors
VPM MIPS
Performance
Simulation
Overhead
Hardware
Simulation

Processor dominated study: As processors (VPMs), having software and data resident in cache,
together with their subsystems (buses, bus bridges, memory, timers, etc.) are switched into the
simulation (Pink line), more hardware becomes active (purple line) so host cycles are shared between
the active VPMs and the hardware, as expected. Since switching between processor models and
hardware also increases the Simulation overhead (blue line) also increases, but relatively slowly.

MPSoC: 15 Aug 2006 Empirical Architecture: Balancing Computation & Communication - Hellestrand & Abdallah 8

SP Model Performance on a Single Host
Single µP VSP Interrupt Handling

Automotive Benchmark, Feb 2004

0
1000
2000
3000
4000
5000

3750 50000 100000
C
yc

le
s

pe
r

In
te

rru
pt

V
P
M

P
er

fo
rm

an
ce

(M
IP

S
/1

00
00

)

Cycles between Interrupts

Event Count

VPM Peformance under High Interrupt Load

Cycles per Interrupt

VPM Performance
(MIPS/10000)

Capability or a VSP under interrupt loads: This is a relatively simple
experiment that shows the performance of a single processor Virtual System
Prototype under increasingly stressful rates of processing asynchronous events
(interrupts). Even at high interrupt rates (every 3,750 cycles is equivalent to a 12
cylinder engine running at 20,000 RPM and producing an interrupt every 10
degrees of crank-angle) the VPM is capable of simulating high software execution
rates while handling such interrupt frequencies.

MPSoC: 15 Aug 2006 Empirical Architecture: Balancing Computation & Communication - Hellestrand & Abdallah 9

Modeling Conclusion

A single host simulation environment is adequate for
architecture and

software development
for Functionally complete, timing accurate

Virtual System Prototypes (VSP)
containing

6-10 closely coupled processors in a VSP
or

6-10 distributed VSPs

MPSoC: 15 Aug 2006 Empirical Architecture: Balancing Computation & Communication - Hellestrand & Abdallah 10

MP Architectures:

Balancing Computation
and Communication

MPSoC: 15 Aug 2006 Empirical Architecture: Balancing Computation & Communication - Hellestrand & Abdallah 11

Balancing Systems: Computation –
Communications

Type 1: Cooperative Computation

Closely-Coupled Processor configurations
• Heterogeneous – more general
• Homogeneous – easier to schedule + SMP

Balanced Communications Requirements
• Low communications latency
• High bandwidth

MPSoC: 15 Aug 2006 Empirical Architecture: Balancing Computation & Communication - Hellestrand & Abdallah 12

Platform Architecture
1st Order Impact

VaST Virtual System Prototype
(model)

Memory
Block

Memory
Block

P1
 M

em
or

y

Combinational
Communication & Infrastructure Fabric

ARM1156
Virtual Processor Model

ARM1156
Virtual Processor Model

I CacheI Cache D CacheD Cache

StdBus I/FStdBus I/F StdBus I/FStdBus I/F

Master

Slave

ARM1176
Virtual Processor Model

ARM1176
Virtual Processor Model

I CacheI Cache D CacheD Cache

StdBus I/FStdBus I/F StdBus I/FStdBus I/F

Master

Slave

StarCore SC2400
Virtual Processor Model

StarCore SC2400
Virtual Processor Model

I CacheI Cache D CacheD Cache

StdBus I/FStdBus I/F StdBus I/FStdBus I/F

D ROM P ROM

Master

Slave

StarCore SC1400
Virtual Processor Model

StarCore SC1400
Virtual Processor Model

I CacheI Cache D CacheD Cache

StdBus I/FStdBus I/F StdBus I/FStdBus I/F

D ROM P ROM

Master

Slave

Memory
Block

Memory
Block

Memory
Block

Memory
Block

Sh
ar

ed
 M

em
or

y

Master

Slave

StdBus
Bridge

StdBus
Bridge

UARTUART

TIMERTIMER

INTCINTC

P1 Devices

Console 1Console 1

Master

Slave

StdBus
Bridge

StdBus
Bridge

UARTUART

TIMERTIMER

INTCINTC

P2 Devices

Console 2Console 2

M
as
ter

Sl
av
e

Memory
Block

Memory
Block

P2
 M

em
or

y

MasterMaster

VaST Virtual System Prototype
(model)

Memory
Block

Memory
Block

P1
 M

em
or

y

Combinational
Communication & Infrastructure Fabric

ARM1156
Virtual Processor Model

ARM1156
Virtual Processor Model

I CacheI Cache D CacheD Cache

StdBus I/FStdBus I/F StdBus I/FStdBus I/F

Master

Slave

ARM1176
Virtual Processor Model

ARM1176
Virtual Processor Model

I CacheI Cache D CacheD Cache

StdBus I/FStdBus I/F StdBus I/FStdBus I/F

Master

Slave

StarCore SC2400
Virtual Processor Model

StarCore SC2400
Virtual Processor Model

I CacheI Cache D CacheD Cache

StdBus I/FStdBus I/F StdBus I/FStdBus I/F

D ROM P ROM

Master

Slave

StarCore SC1400
Virtual Processor Model

StarCore SC1400
Virtual Processor Model

I CacheI Cache D CacheD Cache

StdBus I/FStdBus I/F StdBus I/FStdBus I/F

D ROM P ROM

Master

Slave

Memory
Block

Memory
Block

Memory
Block

Memory
Block

Sh
ar

ed
 M

em
or

y

Master

Slave

StdBus
Bridge

StdBus
Bridge

UARTUART

TIMERTIMER

INTCINTC

P1 Devices

Console 1Console 1

Master

Slave

StdBus
Bridge

StdBus
Bridge

UARTUART

TIMERTIMER

INTCINTC

P2 Devices

Console 2Console 2

M
as
ter

Sl
av
e

Memory
Block

Memory
Block

P2
 M

em
or

y

MasterMaster

Memory
Block

Memory
Block

P1
 M

em
or

y

Combinational
Communication & Infrastructure Fabric

ARM1156
Virtual Processor Model

ARM1156
Virtual Processor Model

I CacheI Cache D CacheD Cache

StdBus I/FStdBus I/F StdBus I/FStdBus I/F

Master

Slave

ARM1176
Virtual Processor Model

ARM1176
Virtual Processor Model

I CacheI Cache D CacheD Cache

StdBus I/FStdBus I/F StdBus I/FStdBus I/F

Master

Slave

StarCore SC2400
Virtual Processor Model

StarCore SC2400
Virtual Processor Model

I CacheI Cache D CacheD Cache

StdBus I/FStdBus I/F StdBus I/FStdBus I/F

D ROM P ROM

Master

Slave

StarCore SC1400
Virtual Processor Model

StarCore SC1400
Virtual Processor Model

I CacheI Cache D CacheD Cache

StdBus I/FStdBus I/F StdBus I/FStdBus I/F

D ROM P ROM

Master

Slave

Memory
Block

Memory
Block

Memory
Block

Memory
Block

Sh
ar

ed
 M

em
or

y

Master

Slave

StdBus
Bridge

StdBus
Bridge

UARTUART

TIMERTIMER

INTCINTC

P1 Devices

Console 1Console 1

Master

Slave

StdBus
Bridge

StdBus
Bridge

UARTUART

TIMERTIMER

INTCINTC

P2 Devices

Console 2Console 2

M
as
ter

Sl
av
e

Memory
Block

Memory
Block

P2
 M

em
or

y

MasterMaster

Memory
Block

Memory
Block

P1
 M

em
or

y

Memory
Block

Memory
Block

P1
 M

em
or

y

Memory
Block

Memory
Block

P1
 M

em
or

y

Combinational
Communication & Infrastructure Fabric

ARM1156
Virtual Processor Model

ARM1156
Virtual Processor Model

I CacheI Cache D CacheD Cache

StdBus I/FStdBus I/F StdBus I/FStdBus I/F

Master

Slave

ARM1156
Virtual Processor Model

ARM1156
Virtual Processor Model

I CacheI Cache D CacheD Cache

StdBus I/FStdBus I/F StdBus I/FStdBus I/F

ARM1156
Virtual Processor Model

ARM1156
Virtual Processor Model

I CacheI Cache D CacheD Cache

StdBus I/FStdBus I/F StdBus I/FStdBus I/F

Master

Slave

Master

Slave

ARM1176
Virtual Processor Model

ARM1176
Virtual Processor Model

I CacheI Cache D CacheD Cache

StdBus I/FStdBus I/F StdBus I/FStdBus I/F

Master

Slave

ARM1176
Virtual Processor Model

ARM1176
Virtual Processor Model

I CacheI Cache D CacheD Cache

StdBus I/FStdBus I/F StdBus I/FStdBus I/F

ARM1176
Virtual Processor Model

ARM1176
Virtual Processor Model

I CacheI Cache D CacheD Cache

StdBus I/FStdBus I/F StdBus I/FStdBus I/F

Master

Slave

Master

Slave

StarCore SC2400
Virtual Processor Model

StarCore SC2400
Virtual Processor Model

I CacheI Cache D CacheD Cache

StdBus I/FStdBus I/F StdBus I/FStdBus I/F

D ROM P ROM

Master

Slave

StarCore SC2400
Virtual Processor Model

StarCore SC2400
Virtual Processor Model

I CacheI Cache D CacheD Cache

StdBus I/FStdBus I/F StdBus I/FStdBus I/F

D ROM P ROM

StarCore SC2400
Virtual Processor Model

StarCore SC2400
Virtual Processor Model

I CacheI Cache D CacheD Cache

StdBus I/FStdBus I/F StdBus I/FStdBus I/F

D ROM P ROM

Master

Slave

Master

Slave

StarCore SC1400
Virtual Processor Model

StarCore SC1400
Virtual Processor Model

I CacheI Cache D CacheD Cache

StdBus I/FStdBus I/F StdBus I/FStdBus I/F

D ROM P ROM

Master

Slave

StarCore SC1400
Virtual Processor Model

StarCore SC1400
Virtual Processor Model

I CacheI Cache D CacheD Cache

StdBus I/FStdBus I/F StdBus I/FStdBus I/F

D ROM P ROM

StarCore SC1400
Virtual Processor Model

StarCore SC1400
Virtual Processor Model

I CacheI Cache D CacheD Cache

StdBus I/FStdBus I/F StdBus I/FStdBus I/F

D ROM P ROM

Master

Slave

Master

Slave

Memory
Block

Memory
Block

Memory
Block

Memory
Block

Sh
ar

ed
 M

em
or

y

Master

Slave

Memory
Block

Memory
Block

Memory
Block

Memory
Block

Sh
ar

ed
 M

em
or

y

Memory
Block

Memory
Block

Memory
Block

Memory
Block

Sh
ar

ed
 M

em
or

y

Master

Slave

Master

Slave

StdBus
Bridge

StdBus
Bridge

UARTUART

TIMERTIMER

INTCINTC

P1 Devices

Console 1Console 1

Master

Slave

StdBus
Bridge

StdBus
Bridge

UARTUART

TIMERTIMER

INTCINTC

P1 Devices

Console 1Console 1

StdBus
Bridge

StdBus
Bridge

UARTUART

TIMERTIMER

INTCINTC

P1 Devices

Console 1Console 1

Master

Slave

Master

Slave

StdBus
Bridge

StdBus
Bridge

UARTUART

TIMERTIMER

INTCINTC

P2 Devices

Console 2Console 2

M
as
ter

Sl
av
e

StdBus
Bridge

StdBus
Bridge

UARTUART

TIMERTIMER

INTCINTC

P2 Devices

Console 2Console 2

StdBus
Bridge

StdBus
Bridge

UARTUART

TIMERTIMER

INTCINTC

P2 Devices

Console 2Console 2

M
as
ter

Sl
av
e

M
as
ter

Sl
av
e

Memory
Block

Memory
Block

P2
 M

em
or

y

Memory
Block

Memory
Block

P2
 M

em
or

y

Memory
Block

Memory
Block

P2
 M

em
or

y

MasterMaster

MPSoC: 15 Aug 2006 Empirical Architecture: Balancing Computation & Communication - Hellestrand & Abdallah 13

Balancing Systems:
Computation – Communications

Type 2: Distributed, Local
Computation

Local, Separate Processing subsystems
• Typically heterogeneous

Communications Requirements
• Tolerates high communications latency
• Low bandwidth

MPSoC: 15 Aug 2006 Empirical Architecture: Balancing Computation & Communication - Hellestrand & Abdallah 14

Distributed Systems Architectures
Typically Heterogeneous – Coarse Grained Concurrency

Engine Model

MATLAB/Simulink

Engine Controller

Processor
(VPM) CAN Controller

CPU Bus

Suspension Controller

Processor
(VPM) CAN Controller

CPU Bus

Panel Controller

Processor
(VPM) CAN Controller

CPU BusCan-TT
Bus

MATLAB/Simulink
Suspension Model

& Display

Engine Model

MATLAB/Simulink

Engine Model

MATLAB/Simulink

Engine Controller

Processor
(VPM) CAN Controller

CPU Bus
Engine Controller

Processor
(VPM) CAN Controller

CPU Bus

Suspension Controller

Processor
(VPM) CAN Controller

CPU Bus
Suspension Controller

Processor
(VPM) CAN Controller

CPU Bus

Panel Controller

Processor
(VPM) CAN Controller

CPU Bus

Panel Controller

Processor
(VPM) CAN Controller

CPU BusCan-TT
Bus

MATLAB/Simulink
Suspension Model

& Display

MPSoC: 15 Aug 2006 Empirical Architecture: Balancing Computation & Communication - Hellestrand & Abdallah 15

Balancing Systems:
Type 3: Hybrid: Mapping into the

Computation–Communications Space

Monolithic, Cooperative Computation with high
interdependency
• Computation: Closely-coupled computation engine
• Communications: Low latency, High bandwidth

Local Computation with Casual Interaction
• Computation: Separate computation engines
• Communication: High latency, Low bandwidth

All points in computation – communication
space between

MPSoC: 15 Aug 2006 Empirical Architecture: Balancing Computation & Communication - Hellestrand & Abdallah 16

Hybrid System:
Networked, Real-time Control and

Multi-Media Application
(Mapping fine and coarse grained concurrency)

Physical
Device

Physical
Sensor / Transducer

Host
Pipe

Host
ExtBus
Driver

Host
USB ExtBus

IXXAT Dev

Timer IntCMemory
(ExtBus Ctrl

Device driver
Codes)

NECv850 UART

Virtual Host
ExtBus Ctrl

LinuxLinux
ConsoleConsole

Bus Controller

Virtual Electronic Controller

Timer IntCMemory
(ExtBus Ctrl

Device driver
Codes)

ARM926E UART Bus Controller

IntC SPI Ctrl

DMAC

Virtual Electronic Controller

StdBus
Bridge

StdBus
Bridge

Memory
Block

Memory
Block

P1
 M

em
or

y

Memory
Block

Memory
Block

StdBus
Bridge

StdBus
Bridge

Arb. Ctrl
DRAM

Arb. Ctrl
DRAM

Memory
Block

Memory
Block

Memory
Block

Memory
Block

Sh
ar

ed
 M

em
or

y

ARM926E P1
Virtual Processor Model

ARM926E P1
Virtual Processor Model

I CacheI Cache D CacheD Cache

StdBus I/FStdBus I/F StdBus I/FStdBus I/F

ARM926E P2
Virtual Processor Model

ARM926E P2
Virtual Processor Model

I CacheI Cache D CacheD Cache

StdBus I/FStdBus I/F StdBus I/FStdBus I/F

StarCore SC1200
Virtual Processor Model

StarCore SC1200
Virtual Processor Model

I CacheI Cache D CacheD Cache

StdBus I/FStdBus I/F StdBus I/FStdBus I/F

D ROM P ROM

StdBus
Bridge

StdBus
Bridge

UARTUART

TIMERTIMER

Bus CtrlBus Ctrl

P1 Devices

Console 1Console 1

A
H
B

Buses

StdBus
Bridge

StdBus
Bridge

UARTUART

TIMERTIMER

INTCINTC

P2 Devices

Console 2Console 2

P2
 M

em
or

y

Masters

Slaves

Memory
Block

Memory
Block

Memory
Block

Memory
Block

Sh
ar

ed

M
em

or
yMemory

Block

Memory
Block

P1
 M

em
or

y StdBus
Bridge

StdBus
Bridge

UARTUART

TIMERTIMER

INTCINTC
P2 Devices

Console 2Console 2

StdBus
Bridge

StdBus
Bridge

UARTUART

TIMERTIMER

INTCINTC
P1 Devices

Console 1Console 1

StarCore SC1200
Virtual Processor Model

StarCore SC1200
Virtual Processor Model

I CacheI Cache D CacheD Cache
StdBus I/FStdBus I/F StdBus I/FStdBus I/F

D ROM P ROM
ARM926E P2

Virtual Processor Model

ARM926E P2
Virtual Processor Model

I CacheI Cache D CacheD Cache
StdBus I/FStdBus I/F StdBus I/FStdBus I/F

ARM926E P1
Virtual Processor Model

ARM926E P1
Virtual Processor Model

I CacheI Cache D CacheD Cache
StdBus I/FStdBus I/F StdBus I/FStdBus I/F

Memory
Block

Memory
Block

P2
 M

em
or

y

Combinational
Communication & Infrastructure Fabric

Bus
Master

Ctrl

Ext Bus

MPSoC: 15 Aug 2006 Empirical Architecture: Balancing Computation & Communication - Hellestrand & Abdallah 17

Measuring Architectures
and

Interpreting the
Measure Meanings

MPSoC: 15 Aug 2006 Empirical Architecture: Balancing Computation & Communication - Hellestrand & Abdallah 18

Measuring, Simplifying, Interpreting
Measuring the VSP

• Platform
+ Relatively static model of hardware architecture
+ Capabilities (eg D-cache) can be manipulated dynamically – usually once

• Software
+ Static architecture with an execution trace that is data dependent
+ Directly stimulates the platform

• Data
+ Primarily consumed by software and resulting stimulus drives the platform

Difficult to interpret (recognize patterns in) millions of event measurements
of hundreds of simulation variables extracted from the VSP - say executing
300 million instructions - during an experiment.

Need to reduce the number of variables that characterize the VSP
• Compute the correlations between variables (R-factor analysis – where factors

are linear combinations of observed variables)
• Find the set of variables (called a factor) with variance that accounts for the

highest common variance amongst the set of variables
• Continue this process, excluding the already determined sets (factors), until no

group exists that is capable of accounting for the variance of at least one variable
The factors are a smaller set of latent (unobservable) variables that can
explain the system of variables. Factors are a linear combination of the
variables in their defining group; the variable are said to load on a factor
according to their correlation with that factor.

Cogent interpretation - explain (name) the factors
The interpretation is in terms of identifiable, data dictated characteristics of
systems derived by summarizing the meanings of the significant loadings of
each variable (factor) on the set of factors (variables).

MPSoC: 15 Aug 2006 Empirical Architecture: Balancing Computation & Communication - Hellestrand & Abdallah 19

Experiment 1: Summary Data

Representative
Variables Rotated Factors

1
Logical

Computation

2
Data Move

Control

3
Data Storage

4
UART Device

Service

5
Load Multiple

6
Store Multiple

7
Instr - Memory

Hierarchy
Total Common
Variance 11 5.9 3.3 2.4 2.4 1.6 1

Correlations 1-3 (.28) 2-7 (-.25) 1-3 (.28) 2-7 (-.25)

Positive
Correlations >0.5 Instr Class

Logical
Compar

Load

Move
Compar Store Load multiple Store multiple

Instr Class Stalls
Logical
Compar

Load (.46)

Move
Load

Branch
Store (.45) Load multiple Store multiple

Data-Path Registers Access Access

Cache-Data Read miss Write miss
Cache-Instr

MemHier-Data Read Write delay Write
Write delay

MemHier-Instr

Device
Read
Write

Tx Data
TLB
Exceptions
CoProc (CP15) Access (.31) Access (.47) Access (.47) Access

Negative
Correlations
< -0.5 (Not …)

Instr Class Arith
Branch Logical Logical

Instr Class Stalls Arith Logical
Compar Store (-.4)

Data-Path Registers Reg. Access
(-.44)

Cache-Data
Cache-Instr
MemHier-Data

MemHier-Instr Fetch
Fetch Delay

Fetch delay
(-.39) Write delay (-.47)

Device
TLB
CoProce (CP15)

Booting MVL v2.1 Linux on ARM926E based Platform (simple memory hierarchy)
100 million Cycles before End of Decompresion of Linux Image (Sampled Data ~100 million cycles)

MPSoC: 15 Aug 2006 Empirical Architecture: Balancing Computation & Communication - Hellestrand & Abdallah 20

Experiment 1 – Interpretation
~100 million Cycle Sample during Linux

Image Decompression

Evidence:
• 3 Dominant Factors (~80% of correlation)

+ Logical Computation (in-line) + Data Storage
+ Data Move Control

• 2 Notable Ancillary Factors
+ Output mssgs from Linux boot via UART device
+ Infrequent structured data movement

– likely function calls

Interpretation of Behaviour:
• Experiment sample is dominated by the decompression

algorithm
• Other work

+ UART service outputs messages

MPSoC: 15 Aug 2006 Empirical Architecture: Balancing Computation & Communication - Hellestrand & Abdallah 21

Experiment 2: Summary Data

Representative
Variables Rotated Factors

1
Structured call

(function)

2
Move data

3
Structured

return
(function)

4
Branch
Predict

5
VM

Operation

6
Device Setup &

Service

7
Data store

Memory
Hierarchy

8
Data Load

Mem.
Hierarchy

9
OS services

invoked

10
Logical /

Bit
Manipulati

on

11
Control Unit

set-up &
Actions

Total Common
Variance 6.8 6.6 5.2 4.5 4.2 4.1 3.95 3.9 3.8 3.7 2.1

Correlations 1-3 (.37) 1-3 (.37),
3-7 (.27) 5-9 (.3) 3-7 (.27) 5-9 (.3)

Positive
Correlations >0.5 Instr Class Store multiple

Move
Load multiple
Store multiple

Load multiple Compar
Load Store Move (.47)

Load Logical

Instr Class Stalls Store multiple
Branch (.35)

Move
Logical

Load multiple
Move (.31)

Load
Branch Store Compare Logical

Data-Path
Registers Access (.39) Access

Cache-Data Write miss Write hit
Read miss Line evict Read hit (.46) Line evict

Line fill (.41)

Line Evict (.36)
Line Write-

back

Read hit
Write hit

Cache-Instr
Miss

Line evict
Line fill

Hit (.32)
Miss (.35)
Line evict

Line Fill (.35)
Hit (.47)

MemHier-Data Write
Write delay Read Read (.37)

MemHier-Instr Fetch
Fetch delay

Device
Read
Write

Tx Data

Dev. Reg Access
Int. Enable Write
Dev Status Read

TLB Miss
Exceptions Int.Request to µP Swi

CoProc (CP15)
Access

Access stall
Negative
Correlations
< -0.5 (Not …)

Instr Class Branch (-.4) Branch (-.31) Arith Logical (-.38)
Branch (-.33) Branch

Instr Class Stalls Branch Arith Logical (-.34) Arith

Data-Path
Registers
Cache-Data
Cache-Instr Hit
MemHier-Data
MemHier-Instr
Device
TLB
Exceptions
CoProce (CP15)

Booting MVL v2.1 Linux on ARM926E based Platform (simple memory hierarchy)
After Decompression - from Start of Boot (Sampled Data ~100 million cycles)

MPSoC: 15 Aug 2006 Empirical Architecture: Balancing Computation & Communication - Hellestrand & Abdallah 22

Experiment 2 – Interpretation
~100 million Cycle Sample – immediately

after decompression
This is a much more complex analysis with more spread clustering of activities.
However is still clearly the trace of an operating system booting.

Evidence:
• 3 Large Factors

+ Structure Call/Return and Moving Data (26% of variance)

• 5 Typical OS initiation activities
+ Extensive data and device set-up
+ Data load/store memory hierarchy with VM
+ Control unit (CP15) initialization
+ Installed OS service invocations
+ Servicing of device interrupts

• Architecture Improvement Indicator
+ Branch prediction indicated

Interpretation on Linux Behaviour:
• Installing the kernel, I/O services, process scheduling services, device drivers,

etc.
• Control unit initialized for I&D cache and VM
• VM, OS and device services enabled
• The correlation between Comparison instructions and Branch stalls indicates a

potential efficiency gain by implementing simple branch prediction
• The 3 main factors comment on the consistent structuring of Linux in execution

MPSoC: 15 Aug 2006 Empirical Architecture: Balancing Computation & Communication - Hellestrand & Abdallah 23

Conclusions on Measurement
Factor Analyzing MVL v2.1 Linux

Booting on a ARM926E, Simple Platform

After preliminary experimentation:
• Separated experiments into 3 defining parts:

+ Expt 1: Decompressing Linux image
+ Expt 2: Start of boot
+ Expt 3: Near Idle process

~50 variables measured, for example:
• I & D cache – hit, miss (read, write), fill, evict
• Instruction classes
• Stall times
• Etc.

Factor analysis:
• Reduced the information to be considered from ~50 to between 3 and 8 main

factors
• For each experiment:

+ Factors have a reasonably good physical meaning
+ The explanation of a complex OS in its main boot sequence (100 million instructions)

was understandable
• Factor analysis indicated the potential efficacy of simple branch prediction for the

ARM926 platform

MPSoC: 15 Aug 2006 Empirical Architecture: Balancing Computation & Communication - Hellestrand & Abdallah 24

Optimizing Architectures for
Power and Performance

Separated Functions

MPSoC: 15 Aug 2006 Empirical Architecture: Balancing Computation & Communication - Hellestrand & Abdallah 25

General Form of Multi-Objective
Optimization Equation:

Characterize an objective function in terms of events
directly measurable from the VSP

1.. , ,1 ,2 ,((...)) ((...), (...) ,...., (...))
k k k k kCPU EvType et CPUk EvType CPU CPU CPU CPU etwhere f g f g g g=Θ =

, , ,

, ,

0.. 1.. s ec ..

0.. 1.. ..

(| ((()),

(((
cc cc CEvType cc CEvType CEvCnt

bc bc BEvType bc BEvTyp

VSP CPU cc cn CPU CEvType cet CPU CEvCnt c n tcecn CPU

Bus bc bcn Bus BEvType bet Bus BEvCnt sbecn tbecn Bus

F f f g Event

f f g Event
= = =

= = =

Θ Θ Θ

Θ Θ Θ
,

, , ,

,

0.. 1.. ..

0.. 1..

)),

((()),

(((

e BEvCnt

bbc bbc BBEvType bc BBEvType BBEvCnt

mc mc MEvType

BusBridge bbc bbcn BBus BBEvType bbet BBus BBEvCnt sbbecn tbbecn BBus

Mem mc mcn Mem MEvType met Mem MEvCnt sme

f f g Event

f f g
= = =

= = =

Θ Θ Θ

Θ Θ Θ
, ,

, , ,

..

0.. 1..det ..

)),

((()))
mc MEvType MEvCnt

dc dc DEvType dc DEvType DEvCnt

cn tmecn Mem

Dev dc cn Dev DEvType Dev DEvCnt sdecn tdecn Dev

Event

f f g Event= = =Θ Θ Θ

Problem: Huge volume of data some of which may be highly correlated with
other data – leading to multiple counting and unreliability in composite measures.

MPSoC: 15 Aug 2006 Empirical Architecture: Balancing Computation & Communication - Hellestrand & Abdallah 26

A Simple Power Function for a
Full Platform

1 5

R e R e

, , , ,

2 :
.

.

.2 2 0 1 2
0

P o w e r P ip e P ip e In s tr In s tr C a c h e C a c h e T L B T L B

g A c c g A c c M e m A c c M e m A c c P e r ip h A c c P e r ip h A c c

In s tr In s tr jm p In s tr e x c e p t In s tr c tr l In s tr c o p ro c

E q u a tio n
f W f W f W f W f

W f W f W f
w h e re
f f f f f

f

= × + × + × + × +
× + × + ×

= × + × + × + × +
×

, , ,

,

.

. ()

In s tr L d S t In s tr a r ith In s tr o th e r

In s tr i i

f f
a n d

f in s tru c t io n s o f ty p e in k c y c le s

+ +

= −∑

MPSoC: 15 Aug 2006 Empirical Architecture: Balancing Computation & Communication - Hellestrand & Abdallah 27

Resolving the Weights for the
Power Function

Table 2: Power: Function Types, Event & Weighting Functions

Function Types Events Weight Functions

Pipeline ibase 6.0
Instruction Types ijmp 2.0

iexcept 2.0

icoproc 12.0

iarith 1.0

Caches (I&D) Cache_lookup fi-dcache(size, ways)
icache_hit iCache-lookup + ficache(line size,

decode)
icache_miss Icache_lookup

dcache_hit Dcache_lookup + fdcache(size,
ways, line size,)

dcache_miss Dcache_lookup

TLB tlb_miss 30.0
Register regfile_access 1.0
Memory (incl.
bus transactions)

membus_transactio
n 50.0

Periph Device (incl.
bus transactions)

periphbus_reg_acce
ss 50.0

MPSoC: 15 Aug 2006 Empirical Architecture: Balancing Computation & Communication - Hellestrand & Abdallah 28

Closely-Coupled-Processor Systems: Architectures
with

Low Latency, High Bandwidth Communication
Infrastructure

VaST Virtual System Prototype
(model)

Memory
Block

Memory
Block

P1
 M

em
or

y

Combinational
Communication & Infrastructure Fabric

ARM1156
Virtual Processor Model

ARM1156
Virtual Processor Model

I CacheI Cache D CacheD Cache

StdBus I/FStdBus I/F StdBus I/FStdBus I/F

Master

Slave

ARM1176
Virtual Processor Model

ARM1176
Virtual Processor Model

I CacheI Cache D CacheD Cache

StdBus I/FStdBus I/F StdBus I/FStdBus I/F

Master

Slave

StarCore SC2400
Virtual Processor Model

StarCore SC2400
Virtual Processor Model

I CacheI Cache D CacheD Cache

StdBus I/FStdBus I/F StdBus I/FStdBus I/F

D ROM P ROM

Master

Slave

StarCore SC1400
Virtual Processor Model

StarCore SC1400
Virtual Processor Model

I CacheI Cache D CacheD Cache

StdBus I/FStdBus I/F StdBus I/FStdBus I/F

D ROM P ROM

Master

Slave

Memory
Block

Memory
Block

Memory
Block

Memory
Block

Sh
ar

ed
 M

em
or

y

Master

Slave

StdBus
Bridge

StdBus
Bridge

UARTUART

TIMERTIMER

INTCINTC

P1 Devices

Console 1Console 1

Master

Slave

StdBus
Bridge

StdBus
Bridge

UARTUART

TIMERTIMER

INTCINTC

P2 Devices

Console 2Console 2

M
as
ter

Sl
av
e

Memory
Block

Memory
Block

P2
 M

em
or

y

MasterMaster

MPSoC: 15 Aug 2006 Empirical Architecture: Balancing Computation & Communication - Hellestrand & Abdallah 29

Experiment 3:
Linux Booting under Various

Memory Hierarchy Constraints

Objective:
• To determine the effect of various memory hierarchy configurations (cache

size and line size, memory type) in a single processor platform on the
performance (instructions / cycle) of, and energy consumed by, Linux
booting.

Experimental Set-up & Results:
• Linux is booted on various configurations of a single ARM926 processor

platform with I & D caches, buses and memory.
• The results were recorded and displayed graphically.

The experiments:
• Linux was booted on various configurations of the platform in which:

+ I & D Cache line size was set at 16 bytes or 32 bytes
+ I & D Cache size was increased from: 0 32kbytes
+ I & D memory types were set at Single Data Rate (SDR) and Double Data Rate

(DDR)

MPSoC: 15 Aug 2006 Empirical Architecture: Balancing Computation & Communication - Hellestrand & Abdallah 30

Experiment 3:
Linux Boot - Memory Hierarchy Analysis

(I&D cache + bus + bus bridge + Mem (DDR | SDR) Analysis

Graph 2A: VPM Speed - Linux Boot on ARM926E
Subsystem of Fig.1 VSP

1.00
1.20
1.40
1.60
1.80
2.00
2.20
2.40
2.60

0 10,000 20,000 30,000 40,000

Cache Size (Bytes)

In
st

ru
ct

io
ns

 /
10

-C
yc

le
s

CL = 16B,
Mem = DDR
CL = 32B,
Mem = DDR
CL = 32B,
Mem = SDR

Graph 2B: Power Consumption - Linux Boot on
ARM926E Subsystem of Fig. 1 VSP

1.00

1.20

1.40

1.60

1.80

2.00

0 10,000 20,000 30,000 40,000

Cache Size (Bytes)

A
ve

. P
ow

er
 *

10̂
7

 /

In
st

ru
ct

io
ns

CL= 16B, Mem
= DDR

CL = 32B,
Mem = DDR

CL = 32B,
Mem = SDR

MPSoC: 15 Aug 2006 Empirical Architecture: Balancing Computation & Communication - Hellestrand & Abdallah 31

Results of Experiment 3:
Linux Booting under Various

Memory Hierarchy Constraints

During the booting of Linux, the Data cache is enabled about
1/3 of the way through the boot.

The performance and power measures are not as dramatically
demarked as for the simpler Viterbi program running largely
from cache. However, and two major effects are still readily
observable.

When cache is large enough to accommodate the working set
of Linux, with the faster memory (DDR) and larger cache line
size (32 bytes):
• The performance of the processor improves by about 20%
• The power consumed decreases by about 20%

MPSoC: 15 Aug 2006 Empirical Architecture: Balancing Computation & Communication - Hellestrand & Abdallah 32

Experiment 4: Typical Experimentation to
Measure Inter-Platform Communication

Latency and Bandwidth

Communication Infrastructure bandwidth
• Vary bus clock frequencies

+ Higher greater bandwidth – assuming intrinsic
latencies are not violated

+ Communications Infrastructure width

Latency due to
• Arbitration of concurrent communication from various

bus controllers on various interconnects
• Bus transmission characteristics

Meeting real-time schedules
• Prioritization of messages
• Decreasing latency
• Increasing bandwidth

MPSoC: 15 Aug 2006 Empirical Architecture: Balancing Computation & Communication - Hellestrand & Abdallah 33

Experiment 4 Results:
SubSystem Interconnect Bus Latencies for

CAN Message ID @ 300kbits/sec

 0

 10

 20

 30

 40

 50

 60

 0 100 200 300 400 500 600

fra
m

e
la

te
nc

y
(m

s)

ID (decimal)

"latency3sec.txt" using 1:2

Some IDs have latencies that are higher than the periodic data
transmission requirement Network has insufficient capabilities

Latency = (Start time of frame ID when it wins bus arbitration) –
(Start time of frame ID for its first attempt to win bus arbitration)

MPSoC: 15 Aug 2006 Empirical Architecture: Balancing Computation & Communication - Hellestrand & Abdallah 34

Experiment 4-A Doubling Bandwidth Results:
SubSystem Interconnect Bus Latencies for

CAN Message ID @ 600kbits/sec

 0

 10

 20

 30

 40

 50

 60

 0 100 200 300 400 500 600

fra
m

e
la

te
nc

y
(m

s)

ID (decimal)

"latency3sec_2x.txt" using 1:2

No IDs have latencies that are higher than the periodic data
transmission requirement Network has sufficient capabilities

Doubling the bandwidth more than decreased the latencies by ½

MPSoC: 15 Aug 2006 Empirical Architecture: Balancing Computation & Communication - Hellestrand & Abdallah 35

The Next Steps
A Higher View of the System

An Opportunity to Structure Conceptual
Abstractions to Understand Systems

and Optimize Them

MPSoC: 15 Aug 2006 Empirical Architecture: Balancing Computation & Communication - Hellestrand & Abdallah 36

The Strategy
Structural Equation Modeling

Characterize the VSP in terms of concepts:
Develop concepts (such as, power, speed, noise, response latencies, cost,
system function and constraints, …) and their comprehensive causal
relationships with factors (and variables) and other concepts.

Specify the measurement model for each Concept:
Return to the factor analysis and specify for each factor one indicator
variable (presumable the most highly correlated variable) together with a
reliability estimate.

Formalize Overall concept as an equation in a set of equations –
Structural Equation Model (SEM):
For each concept, translate the causal relation into a linear equation
constituted from the factors, variables and other concepts In the relation.

Estimate the goodness of fit of the model with the original data:
The measurement model is used with the SEM model and the covariance
matrix of the original variables to compute the goodness of fit of the SEM
model to the data.

MPSoC: 15 Aug 2006 Empirical Architecture: Balancing Computation & Communication - Hellestrand & Abdallah 37

Measurement Modeling

Computation

Context
Switch

OS
Service
Switch

Device
(Timer)
Service

Arithmetic
Logical
Load
Store

iCacheHit

RegAccess
Mem_Rd
Mem_Wt

Branch

0.90
0.98
-.65
-.88
-.22
0.6
0.7
-.94
-.98

0.58
…

0.79
0.95

…

….

….

….

Non-Overlapped
Variables FactorsCorrelations

Factor
Loadings

0.76

-0.65

0.06

0.20

-0.39

-0.34

Concept
Ex. Abstract Processor Efficiency Model

Chi Square Value = ……, P = ……., RMSEA = …….

MPSoC: 15 Aug 2006 Empirical Architecture: Balancing Computation & Communication - Hellestrand & Abdallah 38

Structural Equation Modeling
Best Fit Platform for
Software Workload

Processor
Efficicacy

Communication
Efficicacy

Services
Efficacy

System
Throughput

Concept Relationships
Causal
Correlation

Chi Square Value = ……, P = ……., RMSEA = …….

MPSoC: 15 Aug 2006 Empirical Architecture: Balancing Computation & Communication - Hellestrand & Abdallah 39

The Present & the Near Future

The foundations of empirical systems analysis has been
laid.

We are in the process of building on the empirical work:
• Formulating and verifying abstract Structural Equation Models

to characterize performance and power
• Correlating these abstract models with a simulating platform
• Using the SEM and analysis to drive towards the optimization

of systems, in which:
+ We can demonstrate the balance between computation and

communication empirically
• Investigating statistical techniques used in machine learning to

add further power to our quantitative analysis

MPSoC: 15 Aug 2006 Empirical Architecture: Balancing Computation & Communication - Hellestrand & Abdallah 40

Pictorially

This is where we believe we are
headed …

MPSoC: 15 Aug 2006 Empirical Architecture: Balancing Computation & Communication - Hellestrand & Abdallah 41

QArk Current Objective:
Mapping Algorithms to a Typical Mobile

System Architecture Dictated by Balanced
Computation, Communications & Power

Memory
Block

Memory
Block

Memory
Block

Memory
Block

Sh
ar

ed
 M

em
or

y

Master

Slave
StdBus
Bridge

StdBus
Bridge

UARTUART

TIMERTIMER

INTCINTC

P1 Devices

Console 1Console 1

Master

Slave
StdBus
Bridge

StdBus
Bridge

UARTUART

TIMERTIMER

INTCINTC

P2 Devices

Console 2Console 2

M
as
ter

Sl
av
e

Memory
Block

Memory
Block

P2
 M

em
or

y

Memory
Block

Memory
Block

P1
 M

em
or

y

Combinational
Communication & Infrastructure Fabric

ARM1156
Virtual Processor Model

ARM1156
Virtual Processor Model

I CacheI Cache D CacheD Cache

StdBus I/FStdBus I/F StdBus I/FStdBus I/F

Master

Slave

ARM1176
Virtual Processor Model

ARM1176
Virtual Processor Model

I CacheI Cache D CacheD Cache

StdBus I/FStdBus I/F StdBus I/FStdBus I/F

Master

Slave

StarCore SC2400
Virtual Processor Model

StarCore SC2400
Virtual Processor Model

I CacheI Cache D CacheD Cache

StdBus I/FStdBus I/F StdBus I/FStdBus I/F

D ROM P ROM

Master

Slave

StarCore SC1400
Virtual Processor Model

StarCore SC1400
Virtual Processor Model

I CacheI Cache D CacheD Cache

StdBus I/FStdBus I/F StdBus I/FStdBus I/F

D ROM P ROM

Master

Slave

MasterMaster
Master

Slave

µ−proc µ−proc µ−proc

Combinational
Communication & Infrastructure Fabric

Memory Memory

● ● ●
Accel-
erator

● ● ●
Accel-
erator

Bridge

Streaming Multi-Media Unit

Process
&

Thread
Mappings

Control
OS

Applications /
Processes / Games / ..

Process Scheduler

P.kP.0 ●●●

System
Control

Thread Manager / Mapper

T.kT.0 ●●●

Thread Manager / Mapper

Video Processing
T.0

T.2
T.1 T.3

Thread Manager / Mapper

Audio Processing

T.4
T.0

T.2
T.1 T.3

T.5
T.3

Thread Manager / Mapper

Picture Imaging
T.0

T.2
T.1 T.3

T.4
T.3

MPSoC: 15 Aug 2006 Empirical Architecture: Balancing Computation & Communication - Hellestrand & Abdallah 42

Thank You for Your Attention

& now ….

?’s

	SystemsArchitectureScopeMust be Pre-Silicon!
	Architecture Incorporates the Whole System
	Architecture &The Challenges of Modeling
	MP Model Performance on Single Host 3x Closely Coupled (P + I&D Cache) Models
	SP Model Performance on a Single Host Single P VSP Interrupt Handling Automotive Benchmark, Feb 2004
	Modeling Conclusion
	MP Architectures:Balancing Computation and Communication
	Balancing Systems: Computation – CommunicationsType 1: Cooperative Computation
	Platform Architecture 1st Order Impact
	Balancing Systems: Computation – CommunicationsType 2: Distributed, Local Computation
	Distributed Systems Architectures Typically Heterogeneous – Coarse Grained Concurrency
	Balancing Systems: Type 3: Hybrid: Mapping into theComputation–Communications Space
	Measuring Architecturesand Interpreting the Measure Meanings
	Measuring, Simplifying, Interpreting
	Experiment 1: Summary Data
	Experiment 1 – Interpretation~100 million Cycle Sample during Linux Image Decompression
	Experiment 2: Summary Data
	Experiment 2 – Interpretation~100 million Cycle Sample – immediately after decompression
	Conclusions on MeasurementFactor Analyzing MVL v2.1 Linux Booting on a ARM926E, Simple Platform
	Optimizing Architectures forPower and Performance
	General Form of Multi-Objective Optimization Equation:Characterize an objective function in terms of events directly measura
	A Simple Power Function for a Full Platform
	Resolving the Weights for the Power Function
	Closely-Coupled-Processor Systems: Architectures with Low Latency, High Bandwidth Communication Infrastructure
	Experiment 3:Linux Booting under Various Memory Hierarchy Constraints
	Experiment 3:Linux Boot - Memory Hierarchy Analysis (I&D cache + bus + bus bridge + Mem (DDR | SDR) Analysis
	Results of Experiment 3:Linux Booting under Various Memory Hierarchy Constraints
	Experiment 4: Typical Experimentation to Measure Inter-Platform Communication Latency and Bandwidth
	Experiment 4 Results: SubSystem Interconnect Bus Latencies for CAN Message ID @ 300kbits/sec
	Experiment 4-A Doubling Bandwidth Results:SubSystem Interconnect Bus Latencies for CAN Message ID @ 600kbits/sec
	The Next StepsA Higher View of the System
	The StrategyStructural Equation Modeling
	Measurement Modeling
	Structural Equation Modeling
	The Present & the Near Future
	PictoriallyThis is where we believe we are headed …
	QArk Current Objective:Mapping Algorithms to a Typical Mobile System Architecture Dictated by Balanced Computation, Communic
	Thank You for Your Attention& now ….?’s

