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Architecture 
&

The Challenges of 
Modeling
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A Paradigm Industry System:
Virtual System Prototype (VSP)

of a 3G-Mobile Handset Development

Full System Simulation & Debugging 
• 3 processors, 80 peripheral devices
• Typical performance 20+ MIP
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MP Model Performance on Single Host
3x Closely Coupled (µP + I&D Cache) Models

Triple Processor VSP - Cached
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Processor dominated study: As processors (VPMs), having software and data resident in cache, 
together with their subsystems (buses, bus bridges, memory, timers, etc.) are switched into the 
simulation (Pink line), more hardware becomes active (purple line) so host cycles are shared between 
the active VPMs and the hardware, as expected. Since switching between processor models and 
hardware also increases the Simulation overhead (blue line) also increases, but relatively slowly.
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SP Model Performance on a Single Host 
Single µP VSP Interrupt Handling

Automotive Benchmark, Feb 2004
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Capability or a VSP under interrupt loads: This is a relatively simple 
experiment that shows the performance of a single processor Virtual System 
Prototype under increasingly stressful rates of processing asynchronous events 
(interrupts). Even at high interrupt rates (every 3,750 cycles is equivalent to a 12 
cylinder engine running at 20,000 RPM and producing an interrupt every 10 
degrees of crank-angle) the VPM is capable of simulating high software execution 
rates while handling such interrupt frequencies.
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Modeling Conclusion

A single host simulation environment is adequate for 
architecture and 

software development 
for Functionally complete, timing accurate

Virtual System Prototypes (VSP)
containing 

6-10 closely coupled processors in a VSP
or

6-10 distributed VSPs



MPSoC:  15 Aug 2006 Empirical Architecture: Balancing Computation & Communication - Hellestrand & Abdallah 10

MP Architectures:

Balancing Computation 
and Communication
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Balancing Systems: Computation –
Communications

Type 1: Cooperative Computation

Closely-Coupled Processor configurations
• Heterogeneous – more general
• Homogeneous – easier to schedule + SMP

Balanced Communications Requirements
• Low communications latency
• High bandwidth
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Balancing Systems: 
Computation – Communications

Type 2: Distributed, Local 
Computation

Local, Separate Processing subsystems
• Typically heterogeneous 

Communications Requirements
• Tolerates high communications latency
• Low bandwidth
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Distributed Systems Architectures
Typically Heterogeneous – Coarse Grained Concurrency
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Balancing Systems: 
Type 3: Hybrid: Mapping into the

Computation–Communications Space

Monolithic, Cooperative Computation with high 
interdependency
• Computation: Closely-coupled computation engine
• Communications: Low latency, High bandwidth

Local Computation with Casual Interaction
• Computation: Separate computation engines
• Communication: High latency, Low bandwidth 

All points in computation – communication 
space between
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Hybrid System:
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Multi-Media Application
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Measuring Architectures
and 

Interpreting the 
Measure Meanings



MPSoC:  15 Aug 2006 Empirical Architecture: Balancing Computation & Communication - Hellestrand & Abdallah 18

Measuring, Simplifying, Interpreting
Measuring the VSP

• Platform 
+ Relatively static model of hardware architecture
+ Capabilities (eg D-cache) can be manipulated dynamically – usually once

• Software 
+ Static architecture with an execution trace that is data dependent 
+ Directly stimulates the platform 

• Data 
+ Primarily consumed by software and resulting stimulus drives the platform

Difficult to interpret (recognize patterns in) millions of event measurements 
of hundreds of simulation variables extracted from the VSP - say executing 
300 million instructions - during an experiment.

Need to reduce the number of variables that characterize the VSP
• Compute the correlations between variables (R-factor analysis – where factors 

are linear combinations of observed variables)
• Find the set of variables (called a factor) with variance that accounts for the 

highest common variance amongst the set of variables
• Continue this process, excluding the already determined sets (factors), until no 

group exists that is capable of accounting for the variance of at least one variable
The factors are a smaller set of latent (unobservable) variables that can 
explain the system of variables. Factors are a linear combination of the 
variables in their defining group; the variable are said to load on a factor 
according to their correlation with that factor.

Cogent interpretation - explain (name) the factors
The interpretation is in terms of identifiable, data dictated characteristics of 
systems derived by summarizing the meanings of the significant loadings of 
each variable (factor) on the set of factors (variables).



MPSoC:  15 Aug 2006 Empirical Architecture: Balancing Computation & Communication - Hellestrand & Abdallah 19

Experiment 1: Summary Data

Representative 
Variables Rotated Factors

1
Logical 

Computation

2
Data Move 

Control 

3
Data Storage

4
UART Device 

Service

5
Load Multiple

6
Store Multiple

7
Instr - Memory 

Hierarchy
Total Common 
Variance 11 5.9 3.3 2.4 2.4 1.6 1

Correlations 1-3 (.28) 2-7 (-.25) 1-3 (.28) 2-7 (-.25)

Positive 
Correlations >0.5 Instr Class

Logical
Compar

Load

Move
Compar Store Load multiple Store multiple

Instr Class Stalls
Logical
Compar

Load (.46)

Move
Load

Branch
Store (.45) Load multiple Store multiple

Data-Path Registers Access Access

Cache-Data Read miss Write miss
Cache-Instr

MemHier-Data Read Write delay Write
Write delay

MemHier-Instr

Device
Read
Write

Tx Data
TLB
Exceptions
CoProc (CP15) Access (.31) Access (.47) Access (.47) Access

Negative 
Correlations 
< -0.5 (Not …)

Instr Class Arith
Branch Logical Logical

Instr Class Stalls Arith Logical
Compar Store (-.4)

Data-Path Registers Reg. Access 
(-.44)

Cache-Data
Cache-Instr
MemHier-Data

MemHier-Instr Fetch
Fetch Delay

Fetch delay 
(-.39) Write delay (-.47)

Device
TLB
CoProce (CP15)

Booting MVL v2.1 Linux on ARM926E based Platform (simple memory hierarchy)
100 million Cycles before End of Decompresion of Linux Image (Sampled Data ~100 million cycles)
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Experiment 1 – Interpretation
~100 million Cycle Sample during Linux 

Image Decompression

Evidence:
• 3 Dominant Factors (~80% of correlation)

+ Logical Computation (in-line) + Data Storage
+ Data Move Control 

• 2 Notable Ancillary Factors
+ Output mssgs from Linux boot via UART device
+ Infrequent structured data movement

– likely function calls

Interpretation of Behaviour:
• Experiment sample is dominated by the decompression 

algorithm
• Other work

+ UART service outputs messages
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Experiment 2: Summary Data

Representative 
Variables Rotated Factors

1
Structured call 

(function)

2
Move data

3
Structured 

return 
(function)

4
Branch 
Predict

5
VM 

Operation

6
Device Setup & 

Service

7
Data store 

Memory 
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8
Data Load 

Mem. 
Hierarchy

9
OS services 

invoked

10
Logical / 

Bit 
Manipulati

on

11
Control Unit 

set-up & 
Actions

Total Common 
Variance 6.8 6.6 5.2 4.5 4.2 4.1 3.95 3.9 3.8 3.7 2.1

Correlations 1-3 (.37) 1-3 (.37), 
3-7 (.27) 5-9 (.3) 3-7 (.27) 5-9 (.3)

Positive 
Correlations >0.5 Instr Class Store multiple

Move
Load multiple
Store multiple

Load multiple Compar
Load Store Move (.47)

Load Logical

Instr Class Stalls Store multiple
Branch (.35)

Move
Logical

Load multiple
Move (.31)

Load
Branch Store Compare Logical

Data-Path 
Registers Access (.39) Access

Cache-Data Write miss Write hit
Read miss Line evict Read hit (.46) Line evict

Line fill (.41)

Line Evict (.36)
Line Write-

back

Read hit
Write hit

Cache-Instr
Miss

Line evict
Line fill

Hit (.32)
Miss (.35)
Line evict 

Line Fill (.35)
Hit (.47)

MemHier-Data Write
Write delay Read Read (.37)

MemHier-Instr Fetch
Fetch delay

Device
Read
Write

Tx Data

Dev. Reg Access
Int. Enable Write
Dev Status Read

TLB Miss
Exceptions Int.Request to µP Swi

CoProc (CP15)
Access

Access stall
Negative 
Correlations 
< -0.5 (Not …)

Instr Class Branch (-.4) Branch (-.31) Arith Logical (-.38)
Branch (-.33) Branch

Instr Class Stalls Branch Arith Logical (-.34) Arith

Data-Path 
Registers
Cache-Data
Cache-Instr Hit
MemHier-Data
MemHier-Instr
Device
TLB
Exceptions
CoProce (CP15)

Booting MVL v2.1 Linux on ARM926E based Platform (simple memory hierarchy)
After Decompression - from Start of Boot (Sampled Data ~100 million cycles)
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Experiment 2 – Interpretation
~100 million Cycle Sample – immediately 

after decompression
This is a much more complex analysis with more spread clustering of activities. 
However is still clearly the trace of an operating system booting.

Evidence:
• 3 Large Factors

+ Structure Call/Return and Moving Data (26% of variance)

• 5 Typical OS initiation activities
+ Extensive data and device set-up
+ Data load/store memory hierarchy with VM
+ Control unit (CP15) initialization
+ Installed OS service invocations 
+ Servicing of device interrupts

• Architecture Improvement Indicator
+ Branch prediction indicated

Interpretation on Linux Behaviour:
• Installing the kernel, I/O services, process scheduling services, device drivers, 

etc.
• Control unit initialized for I&D cache and VM
• VM, OS and device services enabled
• The correlation between Comparison instructions and Branch stalls indicates a 

potential efficiency gain by implementing simple branch prediction
• The 3 main factors comment on the consistent structuring of Linux in execution
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Conclusions on Measurement
Factor Analyzing MVL v2.1 Linux 

Booting on a ARM926E, Simple Platform

After preliminary experimentation:
• Separated experiments into 3 defining parts:

+ Expt 1: Decompressing Linux image
+ Expt 2: Start of boot
+ Expt 3: Near Idle process

~50 variables measured, for example:
• I & D cache – hit, miss (read, write), fill, evict
• Instruction classes
• Stall times
• Etc.

Factor analysis:
• Reduced the information to be considered from ~50 to between 3 and 8 main 

factors
• For each experiment:

+ Factors have a reasonably good physical meaning
+ The explanation of a complex OS in its main boot sequence (100 million instructions) 

was understandable
• Factor analysis indicated the potential efficacy of simple branch prediction for the 

ARM926 platform



MPSoC:  15 Aug 2006 Empirical Architecture: Balancing Computation & Communication - Hellestrand & Abdallah 24

Optimizing Architectures for
Power and Performance

Separated Functions



MPSoC:  15 Aug 2006 Empirical Architecture: Balancing Computation & Communication - Hellestrand & Abdallah 25

General Form of Multi-Objective 
Optimization Equation:

Characterize an objective function in terms of events 
directly measurable from the VSP
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Problem: Huge volume of data some of which may be highly correlated with 
other data – leading to multiple counting and unreliability in composite measures.
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A Simple Power Function for a 
Full  Platform
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Resolving the Weights for the
Power Function

Table 2: Power: Function Types, Event &  Weighting Functions

Function Types Events Weight Functions

Pipeline ibase 6.0
Instruction Types ijmp 2.0

iexcept 2.0

icoproc 12.0

iarith 1.0

Caches (I&D) Cache_lookup fi-dcache(size, ways)
icache_hit iCache-lookup + ficache(line size, 

decode)
icache_miss Icache_lookup

dcache_hit Dcache_lookup + fdcache(size, 
ways, line size,)

dcache_miss Dcache_lookup

TLB tlb_miss 30.0
Register regfile_access 1.0
Memory (incl.
bus transactions)

membus_transactio
n 50.0

Periph Device (incl.
bus transactions)

periphbus_reg_acce
ss 50.0



MPSoC:  15 Aug 2006 Empirical Architecture: Balancing Computation & Communication - Hellestrand & Abdallah 28

Closely-Coupled-Processor Systems: Architectures 
with 

Low Latency, High Bandwidth Communication 
Infrastructure
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Experiment 3:
Linux Booting under Various 

Memory Hierarchy Constraints

Objective: 
• To determine the effect of various memory hierarchy configurations (cache 

size and line size, memory type) in a single processor platform on the 
performance (instructions / cycle) of, and energy consumed by, Linux 
booting.

Experimental Set-up & Results:
• Linux is booted on various configurations of a single ARM926 processor 

platform with I & D caches, buses and memory.  
• The results were recorded and displayed graphically.

The experiments:
• Linux was booted on various configurations of the platform in which:

+ I & D Cache line size was set at 16 bytes or 32 bytes
+ I & D Cache size was increased from: 0 32kbytes
+ I & D memory types were set at Single Data Rate (SDR) and Double Data Rate 

(DDR)
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Experiment 3:
Linux Boot - Memory Hierarchy Analysis

(I&D cache + bus + bus bridge + Mem (DDR | SDR) Analysis

Graph 2A: VPM Speed - Linux Boot on ARM926E 
Subsystem of Fig.1 VSP

1.00
1.20
1.40
1.60
1.80
2.00
2.20
2.40
2.60

0 10,000 20,000 30,000 40,000

Cache Size (Bytes)

In
st

ru
ct

io
ns

 / 
10

-C
yc

le
s

CL = 16B,
Mem = DDR
CL = 32B,
Mem = DDR
CL = 32B,
Mem = SDR

Graph 2B: Power Consumption - Linux Boot on 
ARM926E Subsystem of Fig. 1 VSP

1.00

1.20

1.40

1.60

1.80

2.00

0 10,000 20,000 30,000 40,000

Cache Size (Bytes)

A
ve

. P
ow

er
 * 

10̂
7 

 / 
# 

In
st

ru
ct

io
ns

CL= 16B, Mem
= DDR

CL = 32B,
Mem = DDR

CL = 32B,
Mem = SDR



MPSoC:  15 Aug 2006 Empirical Architecture: Balancing Computation & Communication - Hellestrand & Abdallah 31

Results of Experiment 3:
Linux Booting under Various 

Memory Hierarchy Constraints

During the booting of Linux, the Data cache is enabled about 
1/3 of the way through the boot.

The performance and power measures are not as dramatically 
demarked as for the simpler Viterbi program running largely 
from cache. However, and two major effects are still readily 
observable.

When cache is large enough to accommodate the working set 
of Linux, with the faster memory (DDR) and larger cache line 
size (32 bytes): 
• The performance of the processor improves by about 20%
• The power consumed decreases by about 20%
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Experiment 4: Typical Experimentation to 
Measure Inter-Platform Communication 

Latency and Bandwidth

Communication Infrastructure bandwidth
• Vary bus clock frequencies

+ Higher greater bandwidth – assuming intrinsic 
latencies are not violated

+ Communications Infrastructure width

Latency due to
• Arbitration of concurrent communication from various 

bus controllers on various interconnects
• Bus transmission characteristics 

Meeting real-time schedules
• Prioritization of messages 
• Decreasing latency
• Increasing bandwidth
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Experiment 4 Results: 
SubSystem Interconnect Bus Latencies for 

CAN Message ID @ 300kbits/sec
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Experiment 4-A Doubling Bandwidth Results:
SubSystem Interconnect Bus Latencies for 

CAN Message ID @ 600kbits/sec
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The Next Steps
A Higher View of the System

An Opportunity to Structure Conceptual 
Abstractions to Understand Systems 

and Optimize Them
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The Strategy
Structural Equation Modeling

Characterize the VSP in terms of concepts:
Develop concepts (such as, power, speed, noise, response latencies, cost, 
system function and constraints, …) and their comprehensive causal 
relationships with factors (and variables) and other concepts.

Specify the measurement model for each Concept:
Return to the factor analysis and specify for each factor one indicator 
variable (presumable the most highly correlated variable) together with a 
reliability estimate. 

Formalize Overall concept as an equation in a set of equations –
Structural Equation Model  (SEM):
For each concept, translate the causal relation into a linear equation 
constituted from the factors, variables and other concepts In the relation.

Estimate the goodness of fit of the model with the original data:
The measurement model is used with the SEM model and the covariance 
matrix of the original variables to compute the goodness of fit of the SEM 
model to the data. 
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Measurement Modeling

Computation

Context
Switch

OS
Service
Switch

Device
(Timer)
Service

Arithmetic
Logical
Load
Store

iCacheHit

RegAccess
Mem_Rd
Mem_Wt

Branch

0.90
0.98
-.65
-.88
-.22
0.6
0.7
-.94
-.98

0.58
…

0.79
0.95

…

….

….

….

Non-Overlapped
Variables FactorsCorrelations

Factor
Loadings

0.76

-0.65

0.06

0.20

-0.39

-0.34

Concept
Ex. Abstract Processor Efficiency Model

Chi Square Value = ……, P = ……., RMSEA = …….



MPSoC:  15 Aug 2006 Empirical Architecture: Balancing Computation & Communication - Hellestrand & Abdallah 38

Structural Equation Modeling
Best Fit Platform for
Software Workload 
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The Present & the Near Future

The foundations of empirical systems analysis has been 
laid.

We are in the process of building on the empirical work:
• Formulating and verifying abstract Structural Equation Models 

to characterize performance and power
• Correlating these abstract models with a simulating platform
• Using the SEM and analysis to drive towards the optimization 

of systems, in which:
+ We can demonstrate the balance between computation and 

communication empirically
• Investigating statistical techniques used in machine learning to 

add further power to our quantitative analysis
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Pictorially

This is where we believe we are 
headed …
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QArk Current Objective:
Mapping Algorithms to a Typical Mobile 

System Architecture Dictated by Balanced 
Computation, Communications & Power
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Thank You for Your Attention

& now ….

?’s
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