MPSoC'06, Session 5 (Mini-Keynotes)

Bus Architecture Optimization Method Based on System-Level Profiling

Masaharu Imai and Kyoko Ueda

Graduate School of Information Science and Technology Osaka University, Japan imai@ist.osaka-u.ac.jp

Outline

- Introduction
 - Requirements to Embedded System Design
 - Limitation of Conventional Estimation Method
- Proposed Solution
 - Performance Estimation
 - HW Area Estimation
 - Power Consumption Estimation
 - Architecture Exploration
- Experiments
 - Design Quality Estimation
 - Architecture Exploration
- Conclusion

Introduction

Requirements to Embedded Systems

- High Performance
- Small HW Area
- Small Power Consumption (Static and Dynamic)
- Requirements to Design Method
 - Short Time to Market

Design Optimization (Performance, Area, Power)

Limitation of Conventional Design Method

- Iteration of description and evaluation
- RTL Evaluation: Accurate but Slow
- System-Level Estimation: Quick but Less Accuracy

System-Level Model

Components

- Process: unit representing data processing
- Channel: unit representing data transfer
- Assumption
 - Data processing and data transfer take 1 unit time each

Architecture-Level Model

Component

- Functional block: data processing unit
- Bus: data transfer unit
- Buffer: data storage unit associated with bus

Example

Outline

- Introduction
 - Requirements to Embedded System Design
 - Limitation of Conventional Estimation Method
 - Proposed Solution
 - Performance Estimation
 - HW Area Estimation
 - Power Consumption Estimation
 - Architecture Exploration
- Experiments
 - Design Quality Estimation
 - Architecture Exploration
- Conclusion

Proposed Solution

IP-Based Design Method with IP database

- IP database that contains HW area, performance, and power consumption information
- Quick and Accurate Performance Estimation using System-Level Profiling (system-level profiling before architecture-level performance estimation)
- Key Idea
 - Focusing on two kinds of dependencies
 - System-level dependency (execution order)
 - Architecture-level dependency
 - Separate computation and data transfer
 - Data flow amount between architecture-level components is the equivalent to that between system-level component

System-Level Profiling

- Target system written in SystemC
- What to profile
 - The time instance when data processing is completed
 - The time instance when data transfer is completed
 - Transferred data size
- How to profile
 - 1. Operate data processing or data transfer
 - 2. Record the data processing or data transfer completion time
 - 3. Wait for 1 unit time

Performance Estimation Flow

- SL-EOG: System-level execution order graph
- AL-EDG: Architecture-level execution dependency graph

HW Area Estimation

Estimated as the sum of hardware areas of

- Functional Blocks
- Buffers
- Buses (wire area and control logic)
- Bus wire length estimation

Minimum Rectilinear Steiner Tree (MRST) model

Power Consumption Estimation (1)

- Estimated as the sum of power consumption of
 - Functional Blocks
 - Buffers
 - Buses (bus wire & logic)
- Functional Blocks
 - Static power consumption (leakage)
 - Product of static power registered in IP database and application execution time duration
 - Dynamic power consumption
 - Sum of product of dynamic power consumption and number of calls of the function

Power Consumption Estimation (2)

- Buffer
 - Estimated using
 - Transferred data size through channel
- Bus
 - Estimated using
 - Transferred data size through channel
 - Electric capacity of bus
 - Power consumption of bus controller

Architecture Exploration

Objective

 Explores architecture-level models and output those candidates that have a trade-off relation between HW area and application execution time

Input to architecture exploration

- System-Level Model
- System-Level Execution Order Graph
- HW area constraint. (can be set to infinity)
- Application execution time constraint. (can be set to infinity)
- Bus clock frequency candidates
- Bus bit-width candidates
- Number of buffer candidates

Global and Local Search Modes

Global Search Mode

- Part of the system-level components (processes) are fixed to map to given architecture-level components (functional blocks).
- Estimate the upper- and lower-bound of performance, HW area, and power consumption for the mapping
- Local Search Mode
 - Choose a promising mapping
 - Perform branch-and-bound search within the mapping

Architecture Exploration Flow

Outline

Introduction

- Requirements to Embedded System Design
- Limitation of Conventional Estimation Method

Proposed Solution

- Performance Estimation
- HW Area Estimation
- Power Consumption Estimation
- Architecture Exploration
- Experiments
 - Design Quality Estimation
 - Architecture Exploration
- Conclusion

Experiment (1): Performance Estimation

- Comparison between the estimation time of conventional method and proposed method
 - Conventional method: architecture-level simulations
 - Proposed method: profiling and graph analyses
- Target system
 - Audio/Video encoding system of a DVD

Comparison of Estimation Time (1)

Method		Estimation time [sec]		
		2,328 arch.	1 arch.	N arch.
Conventional method		5.53 x 10 ⁴	23.8	23.8 x N
Proposed method	Profiling & SL-EOG const.	54.8		
	AL-EDG const. & analysis	25.6	0.011	0.011 x N
	Total	80.4	54.8	54.8 + 0.011 x N

Comparison of Estimation Time (2)

Result of estimation time for N architecture candidates

 Proposed method can evaluate many architecture candidates almost without additional time

Experiment(2): Architecture Exploration

- Comparison between the number of explored bus architectures and the time for exploration between an exhaustive search and proposed method
- Target system
 - Audio/video encoding system
- Inputs to architecture exploration
 - Bus data transfer candidates (1 MHz, 2 MHz)
 - Bus bit width candidates (16 bits, 32 bits)
 - Number of buffer candidates (1, 2)
 - HW area constraint (Infinity)
 - Application execution time constraint (Infinity)
 - HW area and execution frequency of IPs registered in a database
 - Execution cycle and IP functionality information (Mappable processes)

Comparison of exploration time

Method	# of nodes	# of leaves	# of est.	Comp. Time
Exhaustive	1.59 x 10 ¹³	7.95 x 10 ¹²	7.95 x 10 ¹²	2,521 Years
Exhaustive w/pruning	1.01 x 10 ⁸	7.77 x 10 ⁶	1.87 x 10 ⁷	52 Hours
Global mode	1.98 x 10 ⁶	1.58 x 10 ⁶	3.17 x 10 ⁶	12 Hours
Local mode	44,521	156	29,245	30 Min.

- Experiments on a PC with Pentium 4 (2GHz, 512MB)
- Local mode denotes local search mode with fixed process and channel mapping (10 functional blocks and five buses)
- It is impossible to explore design space by exhaustive search even if pruning is done
- Simultaneous use of global and local search modes can greatly reduce the time needed for exploration

2006/06/15

©2006, Masaharu Imai

Outline

Introduction

- Requirements to Embedded System Design
- Limitation of Conventional Estimation Method

Proposed Solution

- Performance Estimation
- HW Area Estimation
- Power Consumption Estimation
- Architecture Exploration
- Experiments
 - Design Quality Estimation
 - Architecture Exploration
 - Conclusion

Conclusion

- Quick and accurate architecture-level performance estimation method
 - Based on system-level profiling
 - Performance estimation for N architecture candidates can be performed N/2 times faster than conventional method (architecture-level simulation)
- Efficient architecture exploration method
 - Uses proposed performance estimation method
 - Explores architecture candidates using branch-andbound method
 - Proposed Global Mode and Local Mode, when used sequentially, enables designers to explore a huge architecture design space very effectively

Thank you for your attention!