
Institute for Integrated Signal Processing Systems

Profiling Based Architecture
Optimization for Heterogeneous MPSoC

Rainer Leupers, Heinrich Meyr
RWTH Aachen University

Software for Systems on Silicon (SSS)

MPSoC 2006

22006 © R. Leupers

ISS MPSoC research focus areas

ASICASIC CPUCPU ASIPASIP

CPUCPUASIPASIP ASIPASIP

MemoryMemory MemoryMemory MemoryMemory

Wireless+multimedia applications: heterogeneous MPSoC
Various processing elements, including ASIPs
(Application specific) NoC

Architecture exploration/optimization via virtual prototypes
Design technology

• LISATek
• rASIP

Design case studies

SW performance estimation

NoC exploration

application code

Spatial and
temporal task
mapping

32006 © R. Leupers

Overview

1. Customizable embedded processor design
flow

2. MPSoC SW performance estimation
framework

3. Future work

42006 © R. Leupers

Today´s ASIP design technologies

ADL based (ASIP-from-scratch)
E.g. LISATek, Target, Expression
Max. flexibility + efficiency, but significant
design effort

Configurable processor cores
E.g. Tensilica Xtensa, MIPS CorExtend,
ARC Tangent
Pre-designed + pre-verified core
Efficiency via custom instruction set
extensions (ISE)

Special case: reconfigurable
processors

E.g. Stretch

52006 © R. Leupers

ISE: goal and constraints

Primary goal: maximum application speedup under set of
constraints

62006 © R. Leupers

ISE: approach

Complex optimization problem, huge design space,
back annotation required
Optimal solution cannot be found within reasonable
computation times
Our approach:

Interactive ISE identification
Tools generate AT curve
For each point: use mix of ILP and
heuristics to synthesize close-to-
optimal ISEs
User reviews and selects design points of
interest for further fine-grained exploration
RTL generation and logic synthesis

Short turnaround times

72006 © R. Leupers

Processor customization flow

(1) Application code analysis
At C source level
Execution characteristics + hot
spots

(2) Custom instruction (CI)
identification

Optimal set of CIs to speed up hot
spot under area and machine
constraints

(3) CI implementation
Interfacing with the configurable
processor core
Meet area and latency constraints

*

CI 1 +
+

<<

82006 © R. Leupers

Code analysis by Micro-Profiler

Fine grained C code profiling
tool
Instrumentation of 3-address C
code intermediate format
Makes all C operations visible
Predicts compiler optimization
effects
Precise profiling of

Operator execution frequencies
Operation bit widths
Memory accesses/cache hits

...

Statistics export to ISE
synthesis tool

92006 © R. Leupers

Processor customization flow (cont.)

(4) SW adaptation and
tools generation

Rewrite application C
code to utilize CIs
Adapt C compiler, ISS
to support CIs

(5) HW architecture
implementation

Generate RTL HDL
code for CIs
Synthesize
coprocessor for CIs

102006 © R. Leupers

Micro-profiler

ISE design tools user interface

area
speedup

Workbench approach

112006 © R. Leupers

(3)+(4) CI implementation + SW tools adaptation

CoWare CorXpert tool
C compiler, ISS retargeting, HDL generation for ISE
Currently support for MIPS CorExtend
Custom extensions to native MIPS tools
Used as „backend“ here

Synthesized
ISEs

Verilog RTL

C compiler, ISS

122006 © R. Leupers

Preliminary ISE results

Good speedup with few ISEs for simple kernels (e.g. DES)
„Incremental“ improvements required: runtime, estimation, ...
In progress: H.264 reconfigurable MPSoC case study

0

1

2

3

4

5

6

7

8

9

S0 S1 S2 S3 S4 S5 S6 S7 S8

Scratchpad memories

Sp
ee

du
p

Estimated
Simulated

132006 © R. Leupers

Overview

1. Customizable embedded processor design
flow

2. MPSoC SW performance estimation
framework

3. Future work

142006 © R. Leupers

SpecificationSpecification

MPSoC virtual prototypeMPSoC virtual prototype

ProcProcHWHW

Network-on-ChipNetwork-on-Chip

ProcProc HWHW

MemMem MemMem MemMem

MPSoC design flow

Task 3Task 1

Application:

Task 2 Task 4 Task 5

MPSoC HW prototypeMPSoC HW prototype

ProcProcHWHW

Network-on-ChipNetwork-on-Chip

ProcProc HWHW

MemMem MemMem MemMem

152006 © R. Leupers

MPSoC exploration principles

Interconnect
Structure

Divide and conquer
Separate processing elements from communication
Early SW performance estimation

162006 © R. Leupers

MPSoC virtual prototyping platform

Interconnect
Structure

VPU
(Processor Simulator)

VPU
(Processor Simulator) NoC Simulator

VPU
(Processor Simulator)

VPU
(Processor Simulator)

Task 1Task 1 Task 2Task 2 Task 3Task 3 Task 4Task 4

P2P
model

Bus
model

Router
model

Communication: CoWare Architect´s View Framework (AVF)
VPU: virtual processing unit
Enables modeling spatial and temporal task-to-PE mapping

172006 © R. Leupers

VPU concept

„Pre-architecture“ exploration: abstract ISA modeling w/o
ISS (native task C code execution)
Abstract OS modeling (task context switch times)
Problem: task timing and memory access (over NoC)
modeling

Δtswap

swap

get tA

get tB

put tA

…
time

… swaptA busy1

ΔtA1

tA busy2

put tA

ΔtA2

tB busy1‘

ΔtB1’

swap tB busy1‘‘

put tB

ΔtB1’’

response tA

Δtresponse

task Atask A

response

busy

request

busy

request

init
task Btask B

response

busy

request

busy

request

init

response

busy

request

busy

request

init

get

busy2

put

busy1

put

get

get

busy2

put

busy1

put

get

VPU

ΔtA1

ΔtA2

ΔtB1

ΔtB2

Δtresponse

182006 © R. Leupers

Fast and accurate SW performance estimation

time = N(100,10);time = N(100,10);

…
a = 1;
…
cycle_count += 100;
consume(cycle_count);
…

…
a = 1;
…
cycle_count += 100;
consume(cycle_count);
…

…
LOAD R1, #1;
MUL R1, #4;
ADD R2, R1;
LOAD R3, @R2;
…

…
LOAD R1, #1;
MUL R1, #4;
ADD R2, R1;
LOAD R3, @R2;
…

Statistical analysis

Manual time annotation

ISS based execution,
(Processor defined &
Compiler available!)

A
cc

ur
ac

y

high

low
Sp

ee
d

&
 M

od
el

in
g

Ef
fic

ie
nc

y

high

low

Instrumentation
framework
(µ-profiler)

Instrumentation
framework
(µ-profiler)

192006 © R. Leupers

AVF SystemC TLM environmentAVF SystemC TLM environment

VPUVPU

Communication ArchitectureCommunication Architecture

MemoryMemory

…
MEM_ACCESS
…

…
MEM_ACCESS
…

Profiling and
interception of

memory accesses

SW Task 1
(C-Code)

SW Task 1
(C-Code)

SW Task n
(C-Code)

SW Task n
(C-Code)

VPUVPU
…
MEM_ACCESS
…

…
MEM_ACCESS
…

MemoryMemory

…

MemoryMemory

…

VPU/NoC co-exploration

202006 © R. Leupers

Preliminary results for MIPS/Blowfish

High accuracy of VPU vs. MIPS instruction accurate ISS
Need to analyze accuracy vs. cycle accurate ISS

0%

25%

50%

75%

100%

125%

initalization encode decode

Re
la

tiv
e

M
ea

su
re

m
en

t
(1

00
%

 e
qu

al
s

M
IP

S
)

execution cycles MIPS simulator execution cycles prototype

memory accesses MIPS simulator memory accesses prototype

212006 © R. Leupers

Overview

1. Customizable embedded processor design
flow

2. MPSoC SW performance estimation
framework

3. Future work

222006 © R. Leupers

implementationimplementation

Automated MPSoC VP refinement

Application in
abstract task

implementation
(generic OS &
basic comm.)

Application in
abstract task

implementation
(generic OS &
basic comm.)

Early design
space exploration

system (VPU)

Early design
space exploration

system (VPU) ISS based
System

(e.g. MIPS)

ISS based
System

(e.g. MIPS)

Execute on VPU
together with

generic OS

MPSoC
tool flow

(generates
HW & SW)

Requirements
fulfilled ?

NO

YES

232006 © R. Leupers

Task mapping tools

Co
re

 A

Co
re

 B

Drag & Drop
Drop communication
scheme

configure
communication &
processing

H
W

 b
lo

ck

D
efine as H

W
 block

242006 © R. Leupers

Automated MPSoC VP refinement

.xml.xml

System description

Replace
generic OS &

communication
scheme

coreN.execoreN.exe

core1.execore1.exe
…

SW parts:
e.g. MIPS & RTEMS

HW parts:

HWHW NoC

MPSoC
tools

252006 © R. Leupers

MPSoC programming: task graph generation/extraction

How to obtain task graphs?
Specification is not always given
in a parallelized form, but e.g. as
sequential C code
TGFF is not the final solution
Tool requirements

Semi-automatic parallelization
Help MPSoC programmers to
extract the implicit parallelism
inside an application
Compiler and profiling
technology will be key for task
graph generation from C/C++

MPSoC
PE1 PE2 PE3 PE4
T2
T1

T4
T3

T6
T5

T7

ApplicationApplication

??

Task 3Task 1 Task 2 Task 4 Task 5

Institute for Integrated Signal Processing Systems

Thank you !

Morgan Kaufmann @ DAC 2006

	Profiling Based Architecture Optimization for Heterogeneous MPSoC
	ISS MPSoC research focus areas
	Overview
	Today´s ASIP design technologies
	ISE: goal and constraints
	ISE: approach
	Processor customization flow
	Code analysis by Micro-Profiler
	Processor customization flow (cont.)
	ISE design tools user interface
	(3)+(4) CI implementation + SW tools adaptation
	Preliminary ISE results
	Overview
	MPSoC design flow
	MPSoC exploration principles
	MPSoC virtual prototyping platform
	VPU concept
	Fast and accurate SW performance estimation
	VPU/NoC co-exploration
	Preliminary results for MIPS/Blowfish
	Overview
	Automated MPSoC VP refinement
	Task mapping tools
	Automated MPSoC VP refinement
	MPSoC programming: task graph generation/extraction
	Thank you !

