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Anatomy of a Cellular PhoneAnatomy of a Cellular Phone
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Software Defined Radio (SDR)Software Defined Radio (SDR)

• Use software routines instead of ASICs for the physical layer 
operations of wireless communication system

ASICs
(PHY) Programmable

Hardware

Software
Routines

• Rest of the talk
– Characteristics of SDR algorithms
– SODA architecture for power-efficient SDR
– Compilation challenges and approach
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Advantages of SDRAdvantages of SDR
• Lower costs

– Platform longevity, higher volume
– SW has lower development costs

• Time to market
– Future protocols will have complex 

implementations
– Overlap testing/development cycles

• Adaptability
– Standards change over time
– Multi-mode operation
– Sharing hardware resources
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Why is SDR Challenging?Why is SDR Challenging?
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The Anatomy of Wireless ProtocolsThe Anatomy of Wireless Protocols

1. Filtering: suppress signals outside frequency band

2. Modulation: map source information onto signal waveforms

3. Channel Estimation: Estimate channel condition for transceivers 

4. Error Correction: correct errors induced by noisy channel

Interleaver Channel
encoder

deinteleaver
Channel
decoder

(turbo/viterbi)
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WW--CDMA Workload ProfileCDMA Workload Profile
• One operation is equivalent to one RISC instruction• Searcher, Turbo decoder, and LPF are dominant workloads• Workload profile varies according to operation state
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SDR Kernel CharacteristicsSDR Kernel Characteristics
• 8 to 16-bit precision
• Vector operations

– long vectors
– constant vector size

• Static data movement 
patterns

• Scalar operations

Kernels Type of 
Computation

Vector 
Width

W-CDMA

Filter Vector 64

Modulation Vector 2560

Channel Est. Vector 320

Error Correction Mixed 8 or 256

802.11a

Filter Vector 33

Modulation (FFT) Vector 64

Channel Est. Mixed 16

Error Correction Mixed 64
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SODA System Architecture for 3GSODA System Architecture for 3G
• 4 PEs

– static kernel mapping and 
scheduling

– SIMD+Scalar units
• 1 ARM GPP controller

– scalar algorithms and 
protocol controls
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• 2-Level scratchpad memories
– 12KB Local scratchpad memory 

for stream queues
– 64KB global scratchpad memory 

for large buffers
• Low-throughput shared bus

– 200MHz 32-bit bus
– inter-PE communication using 

DMA

SODA System Architecture for 3GSODA System Architecture for 3G
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SODA PE ArchitectureSODA PE Architecture
PE
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SODA PE SIMD PipelineSODA PE SIMD Pipeline
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SODA PE SIMD PipelineSODA PE SIMD Pipeline
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SODA PE SIMD Shuffle NetworkSODA PE SIMD Shuffle Network
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SIMD Shuffle Network
• Shuffle exchange
• Inverse shuffle exchange
• Exchange only
• Iterative feedback
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SODA PE Scalar PipelineSODA PE Scalar Pipeline
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Power Consumption at 180nmPower Consumption at 180nm
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• 180nm ~ 3 W, 26.6 mm2

• 90nm (est) ~ 0.5 W, 6.7 mm2
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SDR Compilation StrategySDR Compilation Strategy
• Two level application description

– System-level: Concurrent tasks extracted from “C + channels + 
attributes”

– Kernel-level: Data parallelism extracted from “C + vectors + 
Matlab operators”

• System compilation – Task level parallelism
– Generates tasks, schedules, communication stubs, DMA 

requests, timing assertions, synchronization, debug support
• Kernel compilation – Data level parallelism

– Lower virtual DLP to physical implementation
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Stylized Automatic ParallelizationStylized Automatic Parallelization

void main() {
for(int i=0; i<N; ++i) {

int x = spread(w[i]);
int y = scramb(x);
fir(y);

}
}

void main() {
for(int i=0; i<N; ++i) {

int x = spread(w[i]) @P0;
int y = scramb(x) @P1;
fir(y) @P2;

}
}

1. Task assignment

void t1() {
for(int i=0; i<N; ++i) {

int x = spread(w[i])@P0;
putchannel(X,x); }}

void t2() {
for(int i=0; i<N; ++i) {

int y = scramb(getchan(X))@P
putchannel(Y,y); }}

void t3() {
for(int i=0; i<N; ++i) {
fir(getchannel(Y)) @ P2; }}

main() {
fork (t1);
fork (t2);
fork (t3);

}2. Decompose tasks
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Kernel Level CompilationKernel Level Compilation
template<class T, TAPS, BSIZE>
kernel FIR {

vector<T, TAPS> z;
vector<T, TAPS> coeff;

void set_coeff(vector<T, TAPS> c) 
{ coeff = c; }

void run(channel<T, BSIZE> inbuf, 
channel<T, BSIZE> outbuf) 

{
T in, out;

for (i = 0; i < BSIZE; i++) {
in = inbuf.pop();
z += coeff * in;
out = z[0];
outbuf.push(out);
z = (z(1:TAPS-1),0); 

}
}

};

int main() {
FIR<int8, 64, BUF_SIZE>   fir65r;
...

}

1. object declaration

// in = inbuf.pop();
sld(sin, inbuf);
agu_incr(inbuf, sizeof(int8));

// z += coeff * in;
vdup(vin, sin);
vmul(vt1, _fir65r_coeff_v0, vin);
vmul(vt2, _fir65r_coeff_v1, vin);
vadd(_fir65r_z_v0, _fir65_z_v0, vt1);
vadd(_fir65r_z_v1, _fir65_z_v1, vt2);

2. operation translation
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Final ThoughtsFinal Thoughts
• 2G and 3G SDR solutions are achievable in 90nm

– 3.9G 4-10x more performance with mW power consumption
• Core technologies for future networks

– OFDM 64 – 2048 point FFT
– MIMO – use of multiple antennas for transmission/reception
– Low density parity check codes

• Key insight: SDR requires innovation across algorithm, 
software and hardware

• SDR platforms offer low-cost, longevity, and adaptability
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