
Herb Sutter Software and the
Concurrency Revolution

1

Herb SutterHerb Sutter
Software ArchitectSoftware Architect
Microsoft Developer DivisionMicrosoft Developer Division

Software and theSoftware and the
Concurrency RevolutionConcurrency Revolution

1

SummarySummary
What you need to know about concurrencyWhat you need to know about concurrency

ItIt’’s heres here
parallelism has long been the parallelism has long been the ““next big thingnext big thing”” –– the future is nowthe future is now

everybodyeverybody’’s doing it (because they have to)s doing it (because they have to)

It will directly affect the way we write softwareIt will directly affect the way we write software
the free lunch is overthe free lunch is over –– for sequential CPUfor sequential CPU--bound appsbound apps

only apps with lots of latent concurrency regain the perf. free only apps with lots of latent concurrency regain the perf. free lunchlunch
(side benefit: responsiveness, the other reason to want async co(side benefit: responsiveness, the other reason to want async code) de)

languages wonlanguages won’’t be able to ignore it and stay relevantt be able to ignore it and stay relevant

The software industry has a lot of work to doThe software industry has a lot of work to do
a generational advance >OO to move beyond a generational advance >OO to move beyond ““threads+locksthreads+locks””

key: incrementally adoptable extensions for existing languageskey: incrementally adoptable extensions for existing languages

Herb Sutter Software and the
Concurrency Revolution

2

2

TruthsTruths

ConsequencesConsequences

FuturesFutures

3

•• Historically:Historically: Boost singleBoost single--
stream performance via stream performance via
more complex chips, first more complex chips, first
via one big feature, then via one big feature, then
via lots of smaller features.via lots of smaller features.

•• Now:Now: Deliver more cores Deliver more cores
per chip.per chip.

•• The free lunch is over for The free lunch is over for
todaytoday’’s sequential apps s sequential apps
andand many concurrent appsmany concurrent apps
(expect some regressions). (expect some regressions).
We need killer apps with We need killer apps with
lots of latent parallelism.lots of latent parallelism.

•• A generational advance A generational advance
>OO is necessary>OO is necessary to get to get
above the above the ““threads+locksthreads+locks””
programming model.programming model.

Each year we get Each year we get fasterfaster moremore processorsprocessors

Montecito

Intel CPU Trends
(sources: Intel, Wikipedia, K. Olukotun)

Pentium

386

Moore’s
Law

Herb Sutter Software and the
Concurrency Revolution

3

4

3232

16

88

4
2

16

2006 2007 2008 2009 2010 2011 2012 2013

OoO - cores

A Baseline Client Growth ProjectionA Baseline Client Growth Projection

You
are

here

5

Two Forces and a Potential Vicious CycleTwo Forces and a Potential Vicious Cycle

Moore’s Law
> transistors
Moore’s Law
> transistors

> cores
per chip
> cores
per chip

< memory
bandwidth

per core

< memory
bandwidth

per core

trade off
< latency for
> bandwidth

trade off
< latency for
> bandwidth

> threads
per core to
hide latency

> threads
per core to
hide latency

> hardware
parallelism
> hardware
parallelism

back to
In-Order cores?
one-time 16x

(4x cores,
4x threads)

back to
In-Order cores?
one-time 16x

(4x cores,
4x threads)

< transistors
per core

< transistors
per core

Herb Sutter Software and the
Concurrency Revolution

4

6

512

256256

128 128

6464
32 3232168842 16

2006 2007 2008 2009 2010 2011 2012 2013

InO - threads
InO - cores
OoO - cores

Potential Client Growth EnvelopePotential Client Growth Envelope

You
are

here

th
e

tr
ut

h
is

 s
om

ew
he

re
 in

 h
er

e

7

The Issue Is (Mostly) On the ClientThe Issue Is (Mostly) On the Client
WhatWhat’’s s ““already solvedalready solved”” and whatand what’’s nots not

““SolvedSolved””: Server apps (e.g., database servers, web services): Server apps (e.g., database servers, web services)
lots of independent requests lots of independent requests –– one thread per request is easyone thread per request is easy

typical to execute many copies of the same codetypical to execute many copies of the same code
shared data usually via structured databasesshared data usually via structured databases

(automatic implicit concurrency control via transactions)(automatic implicit concurrency control via transactions)
⇒⇒ with some care, with some care, ““concurrency problem is already solvedconcurrency problem is already solved”” herehere

Not solved: Typical client apps (i.e., not Photoshop)Not solved: Typical client apps (i.e., not Photoshop)
somehow employ many threads per user somehow employ many threads per user ““requestrequest””

highly atypical to execute many copies of the same codehighly atypical to execute many copies of the same code
shared data in memory, unstructured and promiscuousshared data in memory, unstructured and promiscuous

(error prone explicit locking (error prone explicit locking –– where are the transactions?)where are the transactions?)
also: legacy requirements to run on a given thread (e.g., GUI)also: legacy requirements to run on a given thread (e.g., GUI)

Herb Sutter Software and the
Concurrency Revolution

5

8

Dealing With AmbiguityDealing With Ambiguity

Possible anytime there are
multiple unordered locks

ImpossibleDeadlock

Code coverage insufficient, races
cause hard bugs, and stress testing
gives only probabilistic comfort

Code coverage finds
most bugs, stress
testing proves quality

Testing

Postulate a race and inspect code;
root causes easily remain
unidentified (hard to reproduce,
hard to go back in time)

Trace execution leading
to failure; finding a fix
is generally assured

Debugging

Invariants
Locks

Memory
Behavior NondeterministicDeterministic

Must hold anytime the
protecting lock is not held

Must hold only on
method entry/exit, or
calls to external code

Essential (in some form)Unnecessary

In flux (unless private, read-only,
or protected by lock)

Stable

Concurrent ProgramsSequential Programs

9

Problem: Unstructured free threading.
• Unconstrained. Arbitrary reentrancy, blocking, affinity.

Today: Mitigate by (often) hand-coded patterns.
• Use messages (and variants, e.g., pipelines):

Clearer and easier to reason about successfully.
• Use work queues: Manual decomposition of work +

rightsized thread pool, sometimes semiautomated (e.g.,
BackgroundWorker).

Tomorrow:
• Enable better abstractions:

– Active objects with implicit messages.
– Futures.

• (“Don’t roll your own vtables.”)

Problem: Unstructured free threading.
• Unconstrained. Arbitrary reentrancy, blocking, affinity.

Today: Mitigate by (often) hand-coded patterns.
• Use messages (and variants, e.g., pipelines):

Clearer and easier to reason about successfully.
• Use work queues: Manual decomposition of work +

rightsized thread pool, sometimes semiautomated (e.g.,
BackgroundWorker).

Tomorrow:
• Enable better abstractions:

– Active objects with implicit messages.
– Futures.

• (“Don’t roll your own vtables.”)

Problem 1 (of 2): Problem 1 (of 2): ThreadsThreads

Herb Sutter Software and the
Concurrency Revolution

6

10

Problem: Unstructured mutable shared state.
• No composable solution for synchronizing access.

Today: Use locks. (Where are the transactions?)
• Locks are best we have, but known to be inadequate:

– Most programmers who think they know how to use locks
only think they know how to use locks. Priesthoods
abound. Even major frameworks tend to be broken.

– Not composable.
• Lock-free is sometimes applicable, but isn’t the answer:

– Hard for geniuses to get right. A new lock-free data
structure is a publishable result (often with corrections).

– Very limited. Some basic data structures have no known
lock-free implementations.

– Helps by giving users something they don’t need to lock.

Problem: Unstructured mutable shared state.
• No composable solution for synchronizing access.

Today: Use locks. (Where are the transactions?)
• Locks are best we have, but known to be inadequate:

– Most programmers who think they know how to use locks
only think they know how to use locks. Priesthoods
abound. Even major frameworks tend to be broken.

– Not composable.
• Lock-free is sometimes applicable, but isn’t the answer:

– Hard for geniuses to get right. A new lock-free data
structure is a publishable result (often with corrections).

– Very limited. Some basic data structures have no known
lock-free implementations.

– Helps by giving users something they don’t need to lock.

Problem 2 (of 2): Problem 2 (of 2): LocksLocks
“B

oh
r”

““B
oh

r
Bo

hr
””

“Q
ua

nt
um

”

“Q
ua

nt
um

”

11

Problem: Unstructured mutable shared state.
• No composable solution for synchronizing access.

Tomorrow: Greatly reduce locks. (Alas, not “eliminate.”)
1. Enable transactional programming: Transactional memory is

our best hope. Composable atomic { … } blocks. Naturally
enables speculative execution. (The elephant: Allowing I/O.
The Achilles’ heel: Some resources are not transactable.)

2. Abstractions to reduce “shared”:
Messages. Futures. Private data (e.g., active objects).

3. Techniques to reduce “mutable”:
Immutable objects. Internally versioned objects.

4. Some locks will remain. Let the programmer declare:
(1) Which shared objects are protected by which locks.
(2) Lock hierarchies (caveat: also not composable).

Problem: Unstructured mutable shared state.
• No composable solution for synchronizing access.

Tomorrow: Greatly reduce locks. (Alas, not “eliminate.”)
1. Enable transactional programming: Transactional memory is

our best hope. Composable atomic { … } blocks. Naturally
enables speculative execution. (The elephant: Allowing I/O.
The Achilles’ heel: Some resources are not transactable.)

2. Abstractions to reduce “shared”:
Messages. Futures. Private data (e.g., active objects).

3. Techniques to reduce “mutable”:
Immutable objects. Internally versioned objects.

4. Some locks will remain. Let the programmer declare:
(1) Which shared objects are protected by which locks.
(2) Lock hierarchies (caveat: also not composable).

Problem 2 (of 2): Problem 2 (of 2): LocksLocks

Herb Sutter Software and the
Concurrency Revolution

7

12

Automatic parallelization (e.g., compilers, ILP):
• Limited: Sequential programs tend to be… well, sequential.
• Requires accurate program analysis: Challenging for simple

languages (Fortran), intractable for languages with pointers.
• Doesn’t actually shield programmers from having to know

about concurrency.

Functional languages:
• Contain natural parallelism… except it’s too fine-grained.
• Use pure immutable data… except those in commercial use.
• Not known to be adoptable by mainstream developers.
• Borrow some key abstractions/styles from these languages

(e.g., lambdas) and support them in imperative languages.

OpenMP et al.:
• “Industrial-strength duct tape,” but useful where applicable.

Automatic parallelization (e.g., compilers, ILP):
• Limited: Sequential programs tend to be… well, sequential.
• Requires accurate program analysis: Challenging for simple

languages (Fortran), intractable for languages with pointers.
• Doesn’t actually shield programmers from having to know

about concurrency.

Functional languages:
• Contain natural parallelism… except it’s too fine-grained.
• Use pure immutable data… except those in commercial use.
• Not known to be adoptable by mainstream developers.
• Borrow some key abstractions/styles from these languages

(e.g., lambdas) and support them in imperative languages.

OpenMP et al.:
• “Industrial-strength duct tape,” but useful where applicable.

Some Lead Bullets Some Lead Bullets (useful, but mostly mined)(useful, but mostly mined)

13

DonDon’’t underestimate the programming problem.t underestimate the programming problem.
The hardware community is building parallel hardware, The hardware community is building parallel hardware,

but do you recognize how hard it is to program? but do you recognize how hard it is to program?
DonDon’’t assume the guy upstream t assume the guy upstream

can and will solve the hard problems.can and will solve the hard problems.
This talk has mentioned ideas on future software directions, This talk has mentioned ideas on future software directions,
but these arenbut these aren’’t (yet) proven solutions or shipping products.t (yet) proven solutions or shipping products.

A Final Word on A Final Word on ““TruthsTruths””

Hardware semantics and operations should Hardware semantics and operations should
focus on programmability first, speed second.focus on programmability first, speed second.

In particular, nonIn particular, non--sequentially consistent memory models sequentially consistent memory models
are an enormous source of difficulty for programmers.are an enormous source of difficulty for programmers.

See for example See for example ““Multiprocessors Should Support Simple Memory Consistency Multiprocessors Should Support Simple Memory Consistency
Models,Models,”” Mark D. Hill, IEEE Computer, August 1998. Affirmed at Dagstuhl Mark D. Hill, IEEE Computer, August 1998. Affirmed at Dagstuhl 2003.2003.

Software can help mitigate: Try to keep both SC and performance Software can help mitigate: Try to keep both SC and performance
by reducing/eliminating mutable shared state. by reducing/eliminating mutable shared state. (Easy to say(Easy to say……))

Herb Sutter Software and the
Concurrency Revolution

8

14

TruthsTruths

ConsequencesConsequences

FuturesFutures

15

O(1), O(K), or O(N) Concurrency?O(1), O(K), or O(N) Concurrency?
1. Sequential apps.

• The free lunch is over (if CPU-bound): Flat or
merely incremental perf. improvements.

• Potentially poor responsiveness.

1. Sequential apps.
• The free lunch is over (if CPU-bound): Flat or

merely incremental perf. improvements.
• Potentially poor responsiveness.

2. Explicitly threaded apps.
• Hardwired # of threads that prefer

K CPUs (for a given input workload).
• Can penalize <K CPUs,

doesn’t scale >K CPUs.

2. Explicitly threaded apps.
• Hardwired # of threads that prefer

K CPUs (for a given input workload).
• Can penalize <K CPUs,

doesn’t scale >K CPUs.

3. Scalable concurrent apps.
• Workload decomposed into a

“sea” of heterogeneous work
items (with ordering edges).

• Lots of latent concurrency
we can map down to N cores.

3. Scalable concurrent apps.
• Workload decomposed into a

“sea” of heterogeneous work
items (with ordering edges).

• Lots of latent concurrency
we can map down to N cores.

Herb Sutter Software and the
Concurrency Revolution

9

16

O(1), O(K), or O(N) Concurrency?O(1), O(K), or O(N) Concurrency?
1. Sequential apps.

• The free lunch is over (if CPU-bound): Flat or
merely incremental perf. improvements.

• Potentially poor responsiveness.

1. Sequential apps.
• The free lunch is over (if CPU-bound): Flat or

merely incremental perf. improvements.
• Potentially poor responsiveness.

The bulk
of today’s

client apps

The bulk
of today’s

client apps

Essentially none of
today’s client apps

(outside limited niche uses, e.g.:
OpenMP, background workers,

pure functional languages)

Essentially none of
today’s client apps

(outside limited niche uses, e.g.:
OpenMP, background workers,

pure functional languages)

Virtually all the
rest of today’s

client apps

Virtually all the
rest of today’s

client apps

2. Explicitly threaded apps.
• Hardwired # of threads that prefer

K CPUs (for a given input workload).
• Can penalize <K CPUs,

doesn’t scale >K CPUs.

2. Explicitly threaded apps.
• Hardwired # of threads that prefer

K CPUs (for a given input workload).
• Can penalize <K CPUs,

doesn’t scale >K CPUs.

3. Scalable concurrent apps.
• Workload decomposed into a

“sea” of heterogeneous work
items (with ordering edges).

• Lots of latent concurrency
we can map down to N cores.

3. Scalable concurrent apps.
• Workload decomposed into a

“sea” of heterogeneous work
items (with ordering edges).

• Lots of latent concurrency
we can map down to N cores.

17

OO

Fortran, C, …

asm

threads+locks

semaphores

An OO for ConcurrencyAn OO for Concurrency

Herb Sutter Software and the
Concurrency Revolution

10

18

The Concurrency ElephantThe Concurrency Elephant

19

ConfusionConfusion
You can see it in the vocabulary:You can see it in the vocabulary:

Acquire And-parallelism Associative
Atomic Cancel/Dismiss Consistent
Data-driven Dialogue Fairness
Fine-grain Fork-join Hierarchical
Interactive Invariant Message
Nested Overhead Performance
Priority Protocol Release
Responsiveness Schedule Serializable
Structured Systolic Throughput
Timeout Transaction Update
Virtual

Herb Sutter Software and the
Concurrency Revolution

11

20

Interacting
Infrastructure

Clusters of termsClusters of terms
AcquireAcquire
ReleaseRelease
ScheduleSchedule
VirtualVirtual
Read?Read?
WriteWrite
OpenOpen

TransactionTransaction
AtomicAtomic
UpdateUpdate
AssociativeAssociative
ConsistentConsistent
ContentionContention
OverheadOverhead
InvariantInvariant
SerializableSerializable
LocksLocks

ThroughputThroughput
HomogenousHomogenous
AndAnd--
parallelismparallelism
FineFine--graingrain
ForkFork--joinjoin
OverheadOverhead
SystolicSystolic
DataData--drivendriven
NestedNested
HierarchicalHierarchical
PerformancePerformance

ResponsivenessResponsiveness
InteractiveInteractive
DialogueDialogue
ProtocolProtocol
CancelCancel
DismissDismiss
FairnessFairness
PriorityPriority
MessageMessage
Timeout Timeout

Asynchronous
Agents

Concurrent
Collections

Real
Resources

21

Toward an Toward an ““OO for ConcurrencyOO for Concurrency””
Lots of work across the stack, from App to HWLots of work across the stack, from App to HW

What: Enable apps with lots of latent concurrency at every levelWhat: Enable apps with lots of latent concurrency at every level
cover both coarsecover both coarse-- and fineand fine--grained concurrency,grained concurrency,

from web services to infrom web services to in--process tasks to loop/data parallelprocess tasks to loop/data parallel
map to hardware at run time (map to hardware at run time (““rightsize merightsize me””))

How: Abstractions (no explicit threading, no casual data sharingHow: Abstractions (no explicit threading, no casual data sharing))
active objects asynchronous messages futuresactive objects asynchronous messages futures

rendezvous + collaboration parallel loopsrendezvous + collaboration parallel loops

How, part 2: ToolsHow, part 2: Tools
testing (proving quality, static analysis, testing (proving quality, static analysis, ……))

debugging (going back in time, causality, message reorder, debugging (going back in time, causality, message reorder, ……))
profiling (finding convoys, blocking paths, profiling (finding convoys, blocking paths, ……))

Herb Sutter Software and the
Concurrency Revolution

12

22

TruthsTruths

ConsequencesConsequences

FuturesFutures

23

Concurrency-related features in recent products:
• OpenMP for loop/data parallel operations (Intel, Microsoft).
• Memory models for concurrency (Java, .NET, VC++, C++0x…).

Various projects and experiments:
• ISO C++: Memory model for C++0x – and maybe some library

abstractions?
• The Concur project. (NB: There’s lots of other work going on at

MS. This just happens to be mine.)
• New/experimental languages: Fortress (Sun), Cω (Microsoft).
• Lots of other experimental extensions, new languages, etc.

(Some of them have been around for years in academia, but are
still experimental rather than broadly used in commercial code.)

• Transactional memory research (Intel, Microsoft, Sun, …).

Concurrency-related features in recent products:
• OpenMP for loop/data parallel operations (Intel, Microsoft).
• Memory models for concurrency (Java, .NET, VC++, C++0x…).

Various projects and experiments:
• ISO C++: Memory model for C++0x – and maybe some library

abstractions?
• The Concur project. (NB: There’s lots of other work going on at

MS. This just happens to be mine.)
• New/experimental languages: Fortress (Sun), Cω (Microsoft).
• Lots of other experimental extensions, new languages, etc.

(Some of them have been around for years in academia, but are
still experimental rather than broadly used in commercial code.)

• Transactional memory research (Intel, Microsoft, Sun, …).

Concurrency Tools in 2006 and BeyondConcurrency Tools in 2006 and Beyond

Herb Sutter Software and the
Concurrency Revolution

13

24

The Concur project aims to:The Concur project aims to:
•• define higherdefine higher--level abstractionslevel abstractions
•• for todayfor today’’s imperative languagess imperative languages
•• that evenly support the range of concurrency granularitiesthat evenly support the range of concurrency granularities
•• to let developers write correct and efficient concurrent appsto let developers write correct and efficient concurrent apps
•• with lots of latent parallelism (and not lots of latent bugs)with lots of latent parallelism (and not lots of latent bugs)
•• mapped to the usermapped to the user’’s hardware to s hardware to reenable the free lunch.reenable the free lunch.

Concur GoalsConcur Goals

25

Concur GoalsConcur Goals
The Concur project aims to:The Concur project aims to:

•• define higherdefine higher--level abstractionslevel abstractions
•• for todayfor today’’s imperative languagess imperative languages
•• that evenly support the range of concurrency granularitiesthat evenly support the range of concurrency granularities
•• to let developers write correct and efficient concurrent appsto let developers write correct and efficient concurrent apps
•• with lots of latent parallelism (and not lots of latent bugs)with lots of latent parallelism (and not lots of latent bugs)
•• mapped to the usermapped to the user’’s hardware to s hardware to reenable the free lunch.reenable the free lunch.

above “threads + locks”

in particular C++ right now

e.g., coarse out-of-process,
long-lived in-process,

loop/data parallel

that they can reason about
easily and that is toolable

race-free and deadlock-free
by construction

exe runs well on 1 & 2-core,
“better” (responsiveness or

throughput) on 8-core,
better still on 64-core, …

Herb Sutter Software and the
Concurrency Revolution

14

26

50,00050,000’’ View: Producing the SeaView: Producing the Sea
Active objects/blocks.

active C c;
c.f(); // these calls are nonblocking; each method
c.g(); // call automatically enqueues message for c
… // this code can execute in parallel with f & g

x = active { /*…*/ return foo(10); }; // do some work asynchronously
y = active { a->b(c) }; // evaluate expr asynchronously

z = x.wait() * y.wait(); // express join points via futures

Parallel algorithms (sketch, under development).
for_each(c.depth_first(), f); // sequential
for_each(c.depth_first(), f, parallel); // fully parallel
for_each(c.depth_first(), f, ordered); // ordered parallel

Gaining/losing concurrency is explicit: active and wait.

Active objects/blocks.
active C c;
c.f(); // these calls are nonblocking; each method
c.g(); // call automatically enqueues message for c
… // this code can execute in parallel with f & g

x = active { /*…*/ return foo(10); }; // do some work asynchronously
y = active { a->b(c) }; // evaluate expr asynchronously

z = x.wait() * y.wait(); // express join points via futures

Parallel algorithms (sketch, under development).
for_each(c.depth_first(), f); // sequential
for_each(c.depth_first(), f, parallel); // fully parallel
for_each(c.depth_first(), f, ordered); // ordered parallel

Gaining/losing concurrency is explicit: active and wait.

27

Nutshell summary:
• Each active object conceptually runs on its own thread.
• Method calls from other threads are async messages

processed serially � atomic w.r.t. each other, so no need to
lock the object internally or externally.

• Member data can’t be dangerously exposed.
• Default mainline is a prioritized FIFO pump.
• Expressing thread/task lifetimes as object lifetimes lets us

exploit existing rich language semantics.
active class C {
public:

void f() { … }
};
// in calling code, using a C object
active C c;
c.f(); // call is nonblocking
… // this code can execute in parallel with c.f()

Nutshell summary:
• Each active object conceptually runs on its own thread.
•• Method calls from other threads are async messages Method calls from other threads are async messages

processed serially processed serially �� atomic w.r.t. each other, so no need to atomic w.r.t. each other, so no need to
lock the object internally or externally.lock the object internally or externally.

•• Member data canMember data can’’t be dangerously exposed.t be dangerously exposed.
•• Default mainline is a prioritized FIFO pump.Default mainline is a prioritized FIFO pump.
• Expressing thread/task lifetimes as object lifetimes lets us

exploit existing rich language semantics.
active class C {
public:

void f() { … }
};
// in calling code, using a C object
active C c;
c.f(); // call is nonblocking
… // this code can execute in parallel with c.f()

Active Objects and MessagesActive Objects and Messages

Herb Sutter Software and the
Concurrency Revolution

15

28

Return values are future values:
• Return values (and “out” arguments) from async calls cannot

be used until an explicit wait for the future to materialize.
future<double> tot = calc.TotalOrders(); // call is nonblocking
… potentially lots of work … // parallel work
DoSomethingWith(tot.wait()); // explicitly wait to accept

Why require explicit wait? Four reasons:
• No silent loss of concurrency (e.g., early “logFile << tot;”).
• Explicit block point for writing into lent objects (“out” args).
• Explicit point for emitting exceptions.
• Need to be able to pass futures onward to other code (e.g.,

DoSomethingWith(tot) ≠ DoSomethingWith(tot.wait())).

Return values are future values:
• Return values (and “out” arguments) from async calls cannot

be used until an explicit wait for the future to materialize.
future<double> tot = calc.TotalOrders(); // call is nonblocking
… potentially lots of work … // parallel work
DoSomethingWith(tot.wait()); // explicitly wait to accept

Why require explicit wait? Four reasons:
• No silent loss of concurrency (e.g., early “logFile << tot;”).
• Explicit block point for writing into lent objects (“out” args).
• Explicit point for emitting exceptions.
• Need to be able to pass futures onward to other code (e.g.,

DoSomethingWith(tot) ≠ DoSomethingWith(tot.wait())).

FuturesFutures

29

Active blocks (lambdas) for queueing up work items:
x = active { foo(10) }; // call foo asynchronously
y = active { a->b(c) }; // evaluate asynchronously
p = active { new T }; // allocate and construct asynchronously
… more code, runs concurrently with all three active lambdas …
return x.wait() * y.wait() * p.wait()->bar();

Idioms:
• “Active” to call a sync function async, or get outside locks:

active { plainObj.Foo(42) } // type is future<ReturnType>
• “Wait” to call an async function synchronously:

activeObj.Bar(3.14).wait(); // type is ReturnType
or wait(activeObj.Bar(3.14));

• “Active…wait” to get outside locks and leave caller interruptible:
active { SomeLongOperation() }.wait();

• “Active” to do something later when a future is ready:
active { int i = f.wait(); DoSomethingWith(i); /*…*/ }

Active blocks (lambdas) for queueing up work items:
x = active { foo(10) }; // call foo asynchronously
y = active { a->b(c) }; // evaluate asynchronously
p = active { new T }; // allocate and construct asynchronously
… more code, runs concurrently with all three active lambdas …
return x.wait() * y.wait() * p.wait()->bar();

Idioms:
• “Active” to call a sync function async, or get outside locks:

active { plainObj.Foo(42) } // type is future<ReturnType>
• “Wait” to call an async function synchronously:

activeObj.Bar(3.14).wait(); // type is ReturnType
or wait(activeObj.Bar(3.14));

• “Active…wait” to get outside locks and leave caller interruptible:
active { SomeLongOperation() }.wait();

• “Active” to do something later when a future is ready:
active { int i = f.wait(); DoSomethingWith(i); /*…*/ }

Using Futures and Active LambdasUsing Futures and Active Lambdas

Herb Sutter Software and the
Concurrency Revolution

16

30

Motivation (in DavidMotivation (in David’’s Little Language syntax):s Little Language syntax):
for x in for x in c.depth_first(rc.depth_first(r) do) do f(xf(x))
forallforall x in x in c.depth_first(rc.depth_first(r) do) do f(xf(x))
ordered ordered forallforall x in x in c.depth_first(rc.depth_first(r) do) do f(xf(x))

•• Do these need explicit language support, or can they be a librarDo these need explicit language support, or can they be a library?y?

An Experiment: Parameterized ParallelismAn Experiment: Parameterized Parallelism

31

An Experiment: Parameterized ParallelismAn Experiment: Parameterized Parallelism
Motivation (in DavidMotivation (in David’’s Little Language syntax):s Little Language syntax):

for x in for x in c.depth_first(rc.depth_first(r) do) do f(xf(x))
forallforall x in x in c.depth_first(rc.depth_first(r) do) do f(xf(x))
ordered ordered forallforall x in x in c.depth_first(rc.depth_first(r) do) do f(xf(x))

•• Do these need explicit language support, or can they be a librarDo these need explicit language support, or can they be a library?y?

Concur code (in todayConcur code (in today’’s prototype):s prototype):
for_eachfor_each((cc..depth_firstdepth_first(), f);(), f);
for_eachfor_each((cc..depth_firstdepth_first(), f(), f, parallel, parallel););
for_eachfor_each((cc..depth_firstdepth_first(), f(), f, ordered, ordered););

Herb Sutter Software and the
Concurrency Revolution

17

32

An Experiment: Parameterized ParallelismAn Experiment: Parameterized Parallelism
Motivation (in DavidMotivation (in David’’s Little Language syntax):s Little Language syntax):

for x in for x in c.depth_first(rc.depth_first(r) do) do f(xf(x))
forallforall x in x in c.depth_first(rc.depth_first(r) do) do f(xf(x))
ordered ordered forallforall x in x in c.depth_first(rc.depth_first(r) do) do f(xf(x))

•• Do these need explicit language support, or can they be a librarDo these need explicit language support, or can they be a library?y?

Concur code (in todayConcur code (in today’’s prototype):s prototype):
for_eachfor_each((cc..depth_firstdepth_first(), f);(), f); for_eachfor_each((cc..breadth_firstbreadth_first(), f);(), f);
for_eachfor_each((cc..depth_firstdepth_first(), f(), f, parallel, parallel);); for_eachfor_each((cc..breadth_firstbreadth_first(), f(), f, parallel , parallel););
for_eachfor_each((cc..depth_firstdepth_first(), f(), f, ordered, ordered);); for_eachfor_each((cc..breadth_firstbreadth_first(), f(), f, ordered, ordered););

•• In STL, In STL, (1) containers(1) containers and and (2) algorithms(2) algorithms are orthogonal (additive). are orthogonal (additive).
Now make Now make (3) traversal (3) traversal and and (4) concurrency policy (4) concurrency policy orthogonal too.orthogonal too.

33

An Experiment: Parameterized ParallelismAn Experiment: Parameterized Parallelism
Motivation (in DavidMotivation (in David’’s Little Language syntax):s Little Language syntax):

for x in for x in c.depth_first(rc.depth_first(r) do) do f(xf(x))
forallforall x in x in c.depth_first(rc.depth_first(r) do) do f(xf(x))
ordered ordered forallforall x in x in c.depth_first(rc.depth_first(r) do) do f(xf(x))

•• Do these need explicit language support, or can they be a librarDo these need explicit language support, or can they be a library?y?

Concur code (in todayConcur code (in today’’s prototype):s prototype):
for_eachfor_each((cc..depth_firstdepth_first(), f);(), f); for_eachfor_each((cc..breadth_firstbreadth_first(), f);(), f);
for_eachfor_each((cc..depth_firstdepth_first(), f(), f, parallel, parallel);); for_eachfor_each((cc..breadth_firstbreadth_first(), f(), f, parallel , parallel););
for_eachfor_each((cc..depth_firstdepth_first(), f(), f, ordered, ordered);); for_eachfor_each((cc..breadth_firstbreadth_first(), f(), f, ordered, ordered););

•• In STL, In STL, (1) containers(1) containers and and (2) algorithms(2) algorithms are orthogonal (additive). are orthogonal (additive).
Now make Now make (3) traversal (3) traversal and and (4) concurrency policy (4) concurrency policy orthogonal too.orthogonal too.

Example uses:Example uses:
for_each(for_each(c.c.depth_firstdepth_first(), { _1 += 42 }, (), { _1 += 42 }, parallelparallel);); // add 42 to each// add 42 to each
for_each(for_each(c.c.in_orderin_order(), { (), { coutcout << _1 } << _1 } /*, sequential*//*, sequential*/);); // output to console// output to console

Herb Sutter Software and the
Concurrency Revolution

18

34

Clusters of termsClusters of terms
AcquireAcquire
ReleaseRelease
ScheduleSchedule
VirtualVirtual
Read?Read?
WriteWrite
OpenOpen

TransactionTransaction
AtomicAtomic
UpdateUpdate
AssociativeAssociative
ConsistentConsistent
ContentionContention
OverheadOverhead
InvariantInvariant
SerializableSerializable
LocksLocks

(declarative(declarative
support for)support for)

TransactionalTransactional
memorymemory

ThroughputThroughput
HomogenousHomogenous
AndAnd--
parallelismparallelism
FineFine--graingrain
ForkFork--joinjoin
OverheadOverhead
SystolicSystolic
DataData--drivendriven
NestedNested
HierarchicalHierarchical
PerformancePerformance
ParallelParallel

algorithmsalgorithms

ResponsivenessResponsiveness
InteractiveInteractive
DialogueDialogue
ProtocolProtocol
CancelCancel
DismissDismiss
FairnessFairness
PriorityPriority
MessageMessage
TimeoutTimeout
Active objectsActive objects
Active blocksActive blocks
FuturesFutures
RendezvousRendezvous

Interacting
Infrastructure

Asynchronous
Agents

Concurrent
Collections

Real
Resources

35

SummarySummary
What you need to know about concurrencyWhat you need to know about concurrency

ItIt’’s heres here
parallelism has long been the parallelism has long been the ““next big thingnext big thing”” –– the future is nowthe future is now

everybodyeverybody’’s doing it (because they have to)s doing it (because they have to)

It will directly affect the way we write softwareIt will directly affect the way we write software
the free lunch is overthe free lunch is over –– for sequential CPUfor sequential CPU--bound appsbound apps

only apps with lots of latent concurrency regain the perf. free only apps with lots of latent concurrency regain the perf. free lunchlunch
(side benefit: responsiveness, the other reason to want async co(side benefit: responsiveness, the other reason to want async code) de)

languages wonlanguages won’’t be able to ignore it and stay relevantt be able to ignore it and stay relevant

The software industry has a lot of work to doThe software industry has a lot of work to do
a generational advance >OO to move beyond a generational advance >OO to move beyond ““threads+locksthreads+locks””

key: incrementally adoptable extensions for existing languageskey: incrementally adoptable extensions for existing languages

Herb Sutter Software and the
Concurrency Revolution

19

36

“The Free Lunch Is Over”
(Dr. Dobb’s Journal, March 2005)
http://www.gotw.ca/publications/concurrency-ddj.htm

• The article that first used the terms “the free lunch is over” and
“concurrency revolution” to describe the sea change.

“Software and the Concurrency Revolution”
(with Jim Larus; ACM Queue, September 2005)
http://acmqueue.com/modules.php?name=Content&pa=showpage&pid=332

• Why locks, functional languages, and other silver bullets aren’t
the answer, and observations on what we need for a great leap
forward in languages and also in tools.

“The Free Lunch Is Over”
(Dr. Dobb’s Journal, March 2005)
http://www.gotw.ca/publications/concurrency-ddj.htm

• The article that first used the terms “the free lunch is over” and
“concurrency revolution” to describe the sea change.

“Software and the Concurrency Revolution”
(with Jim Larus; ACM Queue, September 2005)
http://acmqueue.com/modules.php?name=Content&pa=showpage&pid=332

• Why locks, functional languages, and other silver bullets aren’t
the answer, and observations on what we need for a great leap
forward in languages and also in tools.

Further ReadingFurther Reading

Questions?Questions?

