V Institute for Software Integrated Systems \
Vanderbilt University

Semantics in Model-Based
Design

Janos Sztipanovits
ISIS, Vanderbilt University

v Content

mmm- = Application Drivers
= Composition on the Abstract Syntax Layer

= Composition on the Semantic Layer
» Road Ahead




—_———

An Embedded System Design \
Flow
Requirement
1D Description bpeClTICOﬁon
Sensor image must be partitioned into chips to extract
1 potential regions of interest
Regions of interest must be matched with target ima
2 and classified within 30 ms of armival Eu 1C1'iona|
—Design
I = v_—_“_-:\
leo =L | o "= | Component HW Config.
e Design Design
oo | T ‘
= I - gt e
" " Software System
p— F'8 P Architecture |Config. Pro
INFFFT = § = H» m,
;_. ‘é £ o s e o
- LT
. 2 sW
Deployment

v Related Tools and Analyses

Requirement Specification

(\’! Control Design
N

Roftware Architecture

Functional
Mod/Sim

Arch Mod/Sim

Code Gen.

Verif.
Alloc./Sched.
Analysis

HW Arch. Design @ HW Pwr/
I [Perf Est

System¥Arch. Iﬁesign
1

SY)

SW
Deployment




E’ Tool Chain Outputs

Functional Code

OS/Firmware Glue Files

L e

= - DBC File (ﬁAN-Bus)
— OIL Flile. S [ ———— )

E? Content

= Application Drivers

= Road Ahead

== Composition on the Abstract Syntax Layer
= Composition on the Semantic Layer




‘7 Layers in Model-Integrated \
Computing

Modeling Domain Specific Design Flows:
Examples in MIC:

* ECSL - Automotive

* ESML - Avionics

=1 | Domain-Specific = SPML - Signal Processing
'~ || Environments « CAPE/eLMS — Learning Technology
: « AADL....
Metamodeling and Metaprogrammable Tools
(mature or in maturation program)

* GME (Generic Model Editor)

o Metaprogrammable * GReAT (Model Tran§formation)
Tools, Environments * OTIF (Tool Integration Framework)
* UDM (Universal Data Model)
1 * DESERT (Design Space Exploration)

Modeling Semantics (work in progress):

P - X * Semantic “Units”
Semantic Foundation « Semantic Anchorin
) Libraries g

v Syntactic Layer

Modeling & Metamodeling
Model Data Management
Model Transformation
Tool Integration
Design-Space Exploration

Abstract Syntax
Meta-models




‘7 Core Components of the \
Syntactic Laver

= Methods and tools for modeling

DSML DSML i

morApsmLi MTLTDsML,DsMLiI I morApswLi ]

© ©® ©

= Methods and tools for metamodeling
= Industrial standard metamodeling language: MOF (or some others)

= Methods and tools for model transformations

" Formal metamodel transformation language:
Unified Model Transformation Language.

‘7 “Front-End View” of a
Typical MIC Tool Chain

l Common Semantic Domain: Hybrid Automata
l Abstract Syntax and Transformations: Meta-Models
Domain Models and Tool Interchange Formats: Tool Chains

Vehicle Control Platform (VCP) ‘

Schedulability

Component
Analysis

Structure

Behavior

Behavior
Simulation

v m
Componen'r

Interaction

DESERT

~(Experimental toot chain)




AY

“Back-plane View” of a \
Typical MIC Tool Chain

I Common Semantic Domain: Hybrid Automata

DESERT
Meta-Model

SLISF |" susE>
Meta-Model ECSL-DP
8

__| Abstract Syntax and Transformations: Meta-Models

|
'AIRES
] Meta-Model

ECSLDP J ...
Meta-Model

x

}

" ECSLDP |l » | CANOE
=MV

* ECSL:-DP
255ES &5

T
SFC
Meta-Model |

v Need for DSML Composition

Simulink/StateFlow
(DSMLg,/sr)

Component Model

Objective: Optimize the SW architecture
by selecting a component model and by
allocating functions to components.

SW Architecture Model

(DSMLs/s¢,cm)

Platform: Heterogeneous Dataflow
Component Model

Tools:

GME, GReAT, C Compiler, WCET Analyzer

SL/SF

Functional

blocks - SW Component Mapping




v Compositional Metamodeling \

= Goal: Composing modeling languages (not
models)

» Metamodel composition methods in the Generic
Modeling Environment (GME):
= Class Merge

Metamodel Interfacing

Class Refinement

Template Instantiation

Metamodel Transformations

‘7 Example: Metamodel
Interfacing

ReguiremnentsTraces
==Folder=>
Reguirement {
==fomProxy== RequirementRef TraceModel DesignEizment
D field ==Refarence== ™ ==Model=> v
Tesxt field
» are [0, =0
+
o.s
ReguirementTrace
=<Connections» HardwareRel SoftwareRef
==<References> ==Reference=»
& )
Hardware Component SoftwareComponent
==ModelProy== ==ModelProy==
[ »




v Content

= Application Drivers

= Composition on the Abstract Syntax Layer
=== Composition on the Semantic Layer

» Road Ahead

‘7 Semantics of DSMLs: Current
Status

» Usually, specification stops at the level of abstract
syntax metamodels (“static semantics”)
 Specification of behavioral semantics (if done)
— involve major effort due to overly complex
modeling languages,
— use a wide range of formalisms and
lMs e Impact is far-reaching
— tool chains are closed and built around

ioral Semantics

loosely defined “conventions” and proprietary
interpretations of semantics instead of
standards

— potential semantic mismatches create
unacceptable risk for safety critical applications

Major roadblock that slows down acceptance of
model-based design technology.




S

Transformational @
cification of Semantics

———

System Composition Dimension: @
Core Modeling Aspects

Component Behavior

Modeled on different levels of abstraction:

e State-based modeling (FSM, Time Automata, Cont.
Dynamics, Hybrid), fundamental role of time models

» Precise relationship among abstraction levels

* Research: dynamic/adaptive behavior

Expressed as a system topology :
* Module Interconnection (Nodes, Ports, Connections)

Resource Allocation

Structure « Hierarchy
* Research: dynamic topology
Describes interaction patterns among components:
« Set of well-defined Models of Computations (MoC)
Interaction (SR, SDF, DE,...)
* Heterogeneous, but precisely defined interactions
* Research: interface theory (time, resources,..)
Mapping/deploying components on platforms:
Scheduling / * Dynamic Priority

* Behavior guarantees
* Research: composition of schedulers




v Semantic Units

Semantic Unit i

M;: morApsu morAsui

= Semantic Units

= Capture the semantics of a finite set of basic dynamic behavioral
categories, such as FSM, DES, TA.

= Capture the semantics of basic interaction categories (Model of
Computation, MoCs), such as SDF, PN, ...

= Specified in a formal semantics framework.

= Develop a set of simple modeling languages for the semantic
units.

v Search for a Formal Framework

» Specification style: Operational semantics
= Solid mathematical foundation

= Tool support for core use cases:
= Readability (clear syntax and understandable semantics)
= Validation/exploration of semantics (executable
specification)
= Verification of semantic equivalence (generation of
“reference traces”, integratability)

After evaluating several frameworks (Z, TLA+,..)
we selected ASM and the AsmL tool suite (MSR).

10



———

Example: Synchronous Data Flow

Model Interpreter

Run (n as Node)
require n in me_EnabledNodes ()

el | Abstract Data Model || r

case Intvalue
v as Integer
case Doublevalue n.Fire O
v as Double step
case Boolvalue If exists p In n.inputPorts where p.exist then
v &3 Boolean (wafter the firing of a node, all input tokens should be
. by the node.™)
//bata Token, it may contain a value o a null data et
e o i exists p in n.outputPorts where not p.exist then
error ("After the firing of a node, each of its output port should have
D o () 8 (D e o o (o e (et (N o one output token.™)
lchass Port step
ia as string forall ¢ in me.channels whers c.srcPort.exist
If c.dstPort.exist then
error (“A input port receives more than one token.")

var token as Token

= Token (nulll)
var exist as Boolean = false

else
WriteLine ("Channel ** + c.id + " is sending data tokens.")

c.srcPort. token

l//Data Channel connecting two data ports
fctass Channel c.dstPort.token :
id as String dstP N pe
srcPort as Port c.dstl crt.?xlst rue
s i c.srcPort.exist := false
l//A Node is a basic unit is the Data FI It may be an action or Guard //Return all nodes in the SDF that have all its required data tokens to fire
labstract class Node EnabledNodes () as Set of Node
id as String return {n | n in me.nodes where forall p in n.inputPorts where p.exist}
abstract property inputPorts as Seq of Port Initialize O
= forall p in me.inputPorts where p.exist
forall c in me.channels where p.id = c.srcPort.id

c.dstPort. token

abstract property outputPorts as Seq of Port
get.

s and set output k

c.srcPort.exist

//The Run method takes tokens from its input ports, do a
//tokens in the output ports

abstract Fire O c.dstPort.exist := true

ClearPorts ()

|/ /oynanic Data Flow semantic Unit forall c in me.channels
abstract class SDF If c.srcPort.exist then

id as string c.srcPort.exist := false

if c.dstPort.exist then

c.dstPort.exist := false

abstract property nodes as Set of Node

get
abstract property channels as Set of Channel

get
abstract property inputPorts as Seq of Port
et

a
abstract property outputPorts as Seq of Port
get.

DSML Design Through
Semantic Anchoring

A -
I

DSML Semantic Unit i
T

mrTosme,sui ]_

M;: worApsuLuorAsui

= Step1l
= Specify the DSML <A, C, M> by using MOF-based metamodels.

= Step 2
= Select appropriate semantic units L = <A, C, M, S;, Mg> for the behavioral

aspects of the DSML.

= Step 3
= Specify the semantic anchoring M, = A -> A, by using UMT.




AY

Experimental Tool Suite for

Semantic Anchoring

Metamodeling and Model Transformation

Formal Framework for Semantic Units

Tools Specification
GME GReAT Tool Semantic Unit Spec. AsmL Tools
Toolset
DSML Model Semantic Unit Operational Checker
Abstract .
Metamdoe| fumpml Trans. Rules [m===pp| Metamodel DatasMrg;el + Semantics
(A) (M,) (A) Spec.
i : ! I w
: ! i Generator
Mc: :Generate E Instance Unstance
1 L
Domain Model | | ransformation L Domain Model SL Data Model ASM Semantic
©) Engine [(eh)] Framework Simulator

Metamodeling and Model
Transformation Tools

GME: Provide a MOF-based
metamodeling and modeling

environment.

GReAT: Build on GME for

transformation.

Tools for Semantic Unit

Specification

= ASM: A particular kind of
mathematical machine, like the
Turing machine. (Yuri Gurevich)

= AsmL: A formal specification

(Microsoft Research)

E’ Example: HFSML => FSM-SU

GME GReAT Tool FSM-SU Specification
Toolset
HFSML Model FSM Operational
Metamodel |wmmil Trans.Rules (m=e=pp| Metamodel | DQZSJ§§;| + Semantics
(A) (M) (A) Spec.
T7F N 3 o
BEN I~ i
IMB: :Genesat\e i Instance =~ ':"ms;an\ce
7 1 N L ~
anaég)Model || ransformation N N FSM Model XSLT Data Model \\ )
Engine @ ASM Semantic
1 R Fralework
A A
I | \
1 = - 0 \
\ sanrs = \
\ \
s 2oy 2t ] ==
v » E3E3E3 \ '
= FDE gre=r




Example: HFSML => FSM-SU

GME GReAT Tool FSM-SU Specification
Toolset
HFSML Model FSM Operational
Abstract .
Metamode| |l Trans. Rules [m=e==pp| Metamodel atasrv:ggel + Semantics
(A) (M,) (A) - Spec.
-
f : T .
Mc! :Generate ! insta H \
\ H J rstance !Instance \
1 p oL \
i i XSLT
Dumazg)Model | | rané;orir::uon - FSM((I;/I)odeI Data Model \
9 ’ i ASM Semantkc
, Framework!
> t
A 5

lstructure Event

eventType as String

lclass state
i as String

initial  as Boolean

var active as Boolean = false

lclass Transition
id as string

labstract class FSH
id @s string

abstract property states as Set of State
abacract. property cransitions a8 St of Transition

an::tm property outTransitions as Map of <State, Set of Transition>
an::tm property dstState as Map of <Transition, State>

ah::tract property triggerEventType as Wap of <Transition, String>

get.
abstract property outputEventType as Wap of <Transition, String>

React (e as Event) as Event?
step
let CS as State = GetCurrentState ()
stop
Iet enabledTs as Set of Transition = {t | t In outTransitions (CS) where
le_eventType = triggerEventType(t)}

If Size (enabledTs) = 1 then
choose t In enabledTs
step
7/ WriteLine (“Execute transition: " + t.id)
cs.active := false

p
dstState(t).active := true
step
if t in me.outputEventType then
return Event(outputEventType(t))
else
retumn null
else
IT Size(enabledTs) > 1 then
error (“NON-DETERMINISM ERRORI™)
else
return null

Example: HFSML => FSM-SU

ransformation

GME GReAT Tool FSM-SU Specification
Toolset
HFSML Model FSM Abstract Operatiqnal
Metamodel |wmmil Trans.Rules (m=e=pp| Metamodel | Data Model Semantics
(A) (M) (A) Spec.
+ ; 4 :
Me! :Generate Instance | Instance
I

FSM Model XSLT

- Chackyumtachan”

Domain Model [ | N Data Model
(©) Engine (C) ASM Semantic
S
< N =~ ~ Eramework
\ ~
\ -H;U(all(i.ul\r)(\w(\: s Statesutosatos 'S
\ false)
uv. ) -y,
el A,

13



'v Heterogeneous DSMLs \

= Heterogeneity of systems

= Complex systems are composed of heterogeneous
components using heterogeneous interactions.
Modeling and design of heterogeneous systems is a
significant challenge.

= Heterogeneity of tool chains

= Tool chains supporting domain-specific design flows
integrate modeling, analysis and synthesis tools using
DSMLs with overlapping semantics.
» The semantics of a heterogeneous DSML is
probably not captured by a single predefined
semantic unit.

V Compositional Specification
of Semantics

isij‘;jjm,,s Remark: The behavioral

R =<RoRsurRsuiz : composition specifies a

Get_Q|

Re controller, which restricts the
Run_0O I Run_O executions of actions. Since the

m e M= I(A)) behavior of the component
’ semantic units can be described
as partial orders on the sets of
actions they can perform, the

behavioral composition can be

modeled mathematically as a

81 A > Agyy 92 Ac 2 Asuz

Su2

L Rsur Rsys - composition of the partial
orders.

= Structural Composition yields the composed Abstract Data Model,

A=<A., Ay Ayss 05,0, > Where gl, g2 are the partial maps between
concepts in Ag, Agyy, and Ag, .

= Behavioral composition is completed by the R. set of rules that together
with Rg,; and Rgy, form the R rule set for the composed semantics.




V Example: EFSM

software.

stateless computational functions
output data.

activations.

= EFSM has been developed by GMR to specify vehicle motion control (VMC)

= The SEFSM model is a synchronous reactive system including a set of
components communicating through event channels and data channels.

= A SEFSM component is an FSM-based model, which integrates a set of

= Events determine which components are to be activated and the order of

= Primary contributor: Kai Chen, Motorola Research

that consume input data and produce

§ oP1 |
§ oF1 3 P2 ODP1 #
» P . [\ . OEP HB
o, [guardi] / B, [action1]
§ DP1 y il ‘ ooP1 §
§ op2 |8 t ooe2 ¢
{ .
T2
ction3 ¥ ODP1
u, [guardZ] /v, §action2 ¥, A action3 §
Pt “f actiond # 00P2

3} oF1

A SEFSM Component Model

. SEFSM System

EE

al fpction =actionZ| .« M-

ac?lun!

i “’ME

S
p[guardi] factiondl p

~focioa |

nraclloni<T|
on3|

A SEFSM System Model

The Compositio

nal Structure for
SEFSM Systems

2 SEFSM System 5 G« p B

actiond]| g

b M*hm“xll n] .‘
| R=NA(G) ‘_.

=0 '/
(, actiond]
Ptk s

A SEFSM Conceptual Structure

1 [paard | fuction3l p l
£ |

[ SEFSM System
Event Flow e )
| [Arsy i [aasu ] [Aasu |
» ]lh- - - -1
A B C I
FaM FaM FsM
I |
| 1
- 1
““‘"" | factionztta) frem wt
u “'m“ I'lA(,kIQnJ i hactiont I‘ "
ﬂﬂ oMl
SOF

A Compositional Structure

channels.

of FSM-SU and SDF-SU

= A SEFSM system is composed of a set of components, which
communicate with each other through event channels and data

= The semantics of SEFSM systems is defined as the composition

15



v Content

= Application Drivers

= Composition on the Abstract Syntax Layer

= Composition on the Semantic Layer
mmmmd>= Road Ahead

v Road Ahead

» Continue the selection and specification of a
suite of Semantic Units.

» Explore and develop theory for compositional
specification of semantics.

= |nitiate standardization with strong
involvement of IT and Systems industry.

» Strengthen/expand international collaboration.

» Develop an experimental DSML Design Tool
Suite.

16



Appendices

v Integrated MIC Tool Suite

Modeling

Model Data

Management
Design Space

Exploration

Best of Breed

* Modeling Tools
« Simulators
« Verifiers

* Model Checkers

Open Tool Integration
Framework

Vodel Transtormation ESCHER Quality Controlled Repository:
http://lescher.isis.vanderbilt.edu

17



E’ SEFSM Metamodel

ot t =
- oo S8 oo

Metamodel defining the SEFSM
component structure

Metamodel defining the SEFSM
system structure

The abstract syntax metamodels and the textual description
of the behavior are insufficient for the precise
understanding of the semantics of SEFSM.

= For example, the metamodel specification does not reveal the

complex interdependency between the event flow and the data flow
structure of the components.

'V The Compositional Structure

for SEFSM Components

A SEFSM Component Model

» SEFSM £ L
C;ompovnent » lin/etout »
1 3
§ [OPi " B
0P P1
3 8 DF2 ODP1 § ) i
' — FSM  e2n/eZout
|+ =g : {0k . OEP HB - |
o, [guardl| /B, |action | GuardMap ActionMap
§ OPI . T ‘ ooP1 ¢ [ e i(s. elir [ "
‘ oP2 s i t ooe? ' - b= {ire ..-:.-.-- » nd}, v
) T2 . 1
- . _ B action § 00F1 T
u, |guard2| /v, Baction2 ¥ A guard1
oF1 “aj actiond ¥ 0DP2
. o _"( -} guard2 il 1
. g -
3} oF1 I 1 =i action1 L) A action3 T 1

SpF "4 3cton2 ¥ -4 actiond §

A Compositional Structure

= The behavior of SEFSM components can be divided into two different
behavioral aspects: the FSM-based behavior expressing reactions to events
and the SDF-based behavior controlling the execution of computational
functions (actions and guards).




v A Derived Semantic Unit: AA-SU \

= The behavioral semantics specification for SEFSM
components actually specifies the semantics of a
common behavioral category that captures elementary
reactive computation behaviors.

= We can consider the compositional semantics
specification of SEFSM components as a new derived
semantic unit, called Action Automaton Semantic Unit
(AA-SU).

19



