
1

Institute for Software Integrated Systems
Vanderbilt University

Semantics in Model-Based
Design

Janos Sztipanovits
ISIS, Vanderbilt University

Content

Application Drivers
Composition on the Abstract Syntax Layer
Composition on the Semantic Layer
Road Ahead

2

An Embedded System Design
Flow

Requirement
Specification

Functional
Design

HW Config.
Design

System
Config.

Component
Design

Software
Architecture

SW
Deployment

Related Tools and Analyses

RA

FD

CD

HwA

SY

DPL

Functional
Mod/Sim

Arch Mod/Sim

Alloc./Sched.
Analysis

HW Pwr/
Perf Est

Latency/RT
Analysis

SwA

Requirement Specification

Control Design

Component Design

Software Architecture HW Arch. Design

System Arch. Design

Code Gen.
Verif.

SW
Deployment

3

Tool Chain Outputs

Functional Code

OS/Firmware Glue Files

OIL File
DBC File (CAN-Bus)

Content

Application Drivers
Composition on the Abstract Syntax Layer
Composition on the Semantic Layer
Road Ahead

4

doTransition (fsm as FSM, s as State, t
as Transition) =
require s.active
step exitState (s)
step if t.outputEvent <> null then

emitEvent (fsm, t.outputEvent)
step activateState (fsm, t.dst)

Semantic Foundation
Libraries

Domain-Specific
Environments

Metaprogrammable
Tools, Environments

Modeling Domain Specific Design Flows:
Examples in MIC:

• ECSL - Automotive
• ESML - Avionics
• SPML - Signal Processing
• CAPE/eLMS – Learning Technology
• AADL….

Metamodeling and Metaprogrammable Tools:
(mature or in maturation program)

• GME (Generic Model Editor)
• GReAT (Model Transformation)
• OTIF (Tool Integration Framework)
• UDM (Universal Data Model)
• DESERT (Design Space Exploration)

Modeling Semantics (work in progress):
• Semantic “Units”
• Semantic Anchoring

Layers in Model-Integrated
Computing

Syntactic Layer

 ∈=Υ Υ rRrCD |{),(

Semantic Domain:
Set-Valued

Domain models
Interchange Formats

Abstract Syntax
Meta-models

MC

MS

interface Event
structure ModelEvent
implements Event
case ModelEvent1

Structural Semantics

Modeling & Metamodeling
Model Data Management
Model Transformation
Tool Integration
Design-Space Exploration

5

Core Components of the
Syntactic Layer

Methods and tools for modeling

CS

A

MC MS

DSML

DSML DSML i

SiCi

Ai

MCi MSi

DSMLi

MOFADSMLi

MOF

MOFADSMLi

MOF

Methods and tools for metamodeling
Industrial standard metamodeling language: MOF (or some others)

Transformation
T

MTLTDSML,DSMLi

UMT

MA

Methods and tools for model transformations
Formal metamodel transformation language:
Unified Model Transformation Language.

Abstract Syntax and Transformations: Meta-Models
Common Semantic Domain: Hybrid Automata

Domain Models and Tool Interchange Formats: Tool Chains

DESERT

AIRES

OSEK/
Code

ECSL-DP
GME

Simulink
Stateflow

SL/SF
ECSL-DP

ECSL-DP
CANOE

ECSL-
DP

AIF

S
L/S

F
D

S
E

E
D

PC

Vehicle Control Platform (VCP)

Behavior
Model

Component
Structure

Component
Interaction

Schedulability
Analysis

Behavior
Simulation

(Experimental tool chain)

“Front-End View” of a
Typical MIC Tool Chain

6

Common Semantic Domain: Hybrid Automata

Domain Models and Tool Interchange Formats: Tool Chains

DESERT

AIRES

OSEK/
Code

ECSL-DP
GME

Simulink
Stateflow

SL/SF
ECSL-DP

ECSL-DP
MOML

ECSL-
DP

AIF

S
L/S

F
D

S
E

E
D

PC

Vehicle Control Platform (VCP)

Abstract Syntax and Transformations: Meta-Models

SL/SF
Meta-Model

ECSL-DP
Meta-Model

AIRES
Meta-Model

CANOE

DESERT
Meta-Model

SFC
Meta-Model

ECSL-DP
SFC

SL/SF
ECSL-DP

ECSL-DP
MOML

ECSL-DP
AIF

SL/SF
DESERT

“Back-plane View” of a
Typical MIC Tool Chain

Need for DSML Composition

Simulink/StateFlow
(DSMLSL/SF)

Component Model

SW Architecture Model
(DSMLSL/SF,CM)

SL/SF
Functional blocks – SW Component Mapping

Objective: Optimize the SW architecture
by selecting a component model and by
allocating functions to components.
Platform: Heterogeneous Dataflow
Component Model
Tools:
GME, GReAT, C Compiler, WCET Analyzer

CM

7

Compositional Metamodeling

Goal: Composing modeling languages (not
models)
Metamodel composition methods in the Generic
Modeling Environment (GME):

Class Merge
Metamodel Interfacing
Class Refinement
Template Instantiation
Metamodel Transformations

Example: Metamodel
Interfacing

8

Content

Application Drivers
Composition on the Abstract Syntax Layer
Composition on the Semantic Layer
Road Ahead

doTransition (fsm as
FSM, s
as State, t as
Transition) =

Semantic Domain
Meta-models

Domain models
Interchange Formats

Abstract Syntax
Meta-models

MC

MS

Behavioral Semantics

Semantics of DSMLs: Current
Status

• Usually, specification stops at the level of abstract
syntax metamodels (“static semantics”)

• Specification of behavioral semantics (if done)
– involve major effort due to overly complex

modeling languages,
– use a wide range of formalisms and

• Impact is far-reaching
– tool chains are closed and built around

loosely defined “conventions” and proprietary
interpretations of semantics instead of
standards

– potential semantic mismatches create
unacceptable risk for safety critical applications

Major roadblock that slows down acceptance of
model-based design technology.

9

Transformational
Specification of Semantics

Specify mapping to another language with well-
defined semantics.

Transformation
T

Well-defined DSML i

CS

A

MC MS

DSML

DSML MS= MSi ○MA

MOFADSMLi MTLTDSML,DSMLi

MOF UMT

SiCi

Ai

MCi MSi

DSMLi

MSi: Ai→Si

MOFADSMLi

MOF

Mi: MOFADSML→MOFADSMLi

Use a formal metamodeling framework
Industrial standard metamodeling language: MOF
Formal metamodel transformation language:
Unified Model Transformation Language.

MA

SiCi

Ai

MCi MSi

DSMLi

MSi: Ai→Si

MOFADSMLi

MOF

Where are these coming from?

System Composition Dimension:
Core Modeling Aspects

Component Behavior

Structure

Interaction

Scheduling /
Resource Allocation

Modeled on different levels of abstraction:
• State-based modeling (FSM, Time Automata, Cont.

Dynamics, Hybrid), fundamental role of time models
• Precise relationship among abstraction levels
• Research: dynamic/adaptive behavior

Expressed as a system topology :
• Module Interconnection (Nodes, Ports, Connections)
• Hierarchy
• Research: dynamic topology

Describes interaction patterns among components:
• Set of well-defined Models of Computations (MoC)

(SR, SDF, DE,…)
• Heterogeneous, but precisely defined interactions
• Research: interface theory (time, resources,..)

Mapping/deploying components on platforms:
• Dynamic Priority
• Behavior guarantees
• Research: composition of schedulers

10

Semantic Units

Semantic Units
Capture the semantics of a finite set of basic dynamic behavioral
categories, such as FSM, DES, TA.
Capture the semantics of basic interaction categories (Model of
Computation, MoCs), such as SDF, PN, …
Specified in a formal semantics framework.
Develop a set of simple modeling languages for the semantic
units.

MA

SiCi

Ai

MCi MSi

SUiCS

A

MC MS

DSML

MOFADSMLi MOFASUiMTLTDSML,SUi

MOF UMT MOF

Mi: MOFADSML→MOFASUi

Transformation
T

MSi: Ai→Si

MS= MSi ○MA Semantic Unit iDSML

Search for a Formal Framework

Specification style: Operational semantics
Solid mathematical foundation
Tool support for core use cases:

Readability (clear syntax and understandable semantics)
Validation/exploration of semantics (executable
specification)
Verification of semantic equivalence (generation of
“reference traces”, integratability)

After evaluating several frameworks (Z, TLA+,..)
we selected ASM and the AsmL tool suite (MSR).

11

Example: Synchronous Data Flow
structure Value

 case IntValue

 v as Integer

 case DoubleValue

 v as Double

 case BoolValue

 v as Boolean

//Data Token, it may contain a value or a null data

structure Token

 value as Value?

//Data Port, when exist is true, the port has an effective data token

class Port

 id as String

 var token as Token = Token (null)

 var exist as Boolean = false

//Data Channel connecting two data ports

class Channel

 id as String

 srcPort as Port

 dstPort as Port

//A Node is a basic unit is the Data Flow. It may be an action or a Guard

abstract class Node

 id as String

 abstract property inputPorts as Seq of Port

 get

 abstract property outputPorts as Seq of Port

 get

 //The Run method takes tokens from its input ports, do actions and set output

 //tokens in the output ports

 abstract Fire ()

//Dynamic Data Flow Semantic Unit

abstract class SDF

 id as String

 abstract property nodes as Set of Node

 get

 abstract property channels as Set of Channel

 get

 abstract property inputPorts as Seq of Port

 get

 abstract property outputPorts as Seq of Port

 get

Run (n as Node)

 require n in me.EnabledNodes ()

 step

 n.Fire ()

 step

 if exists p in n.inputPorts where p.exist then

 error ("After the firing of a node, all input tokens should be consumed

by the node.")

 step

 if exists p in n.outputPorts where not p.exist then

 error ("After the firing of a node, each of its output port should have

one output token.")

 step

 forall c in me.channels where c.srcPort.exist

 if c.dstPort.exist then

 error ("A input port receives more than one token.")

 else

 WriteLine ("Channel " + c.id + " is sending data tokens.")

 c.dstPort.token := c.srcPort.token

 c.dstPort.exist := true

 c.srcPort.exist := false

 //Return all nodes in the SDF that have all its required data tokens to fire.

 EnabledNodes () as Set of Node

 return {n | n in me.nodes where forall p in n.inputPorts where p.exist}

 Initialize ()

 forall p in me.inputPorts where p.exist

 forall c in me.channels where p.id = c.srcPort.id

 c.dstPort.token := c.srcPort.token

 c.srcPort.exist := false

 c.dstPort.exist := true

 ClearPorts ()

 forall c in me.channels

 if c.srcPort.exist then

 c.srcPort.exist := false

 if c.dstPort.exist then

 c.dstPort.exist := false

Abstract Data Model Model Interpreter

DSML Design Through
Semantic Anchoring

Step 1
Specify the DSML <A, C, Mc> by using MOF-based metamodels.

Step 2
Select appropriate semantic units L = < Ai, Ci, MCi, Si, MSi> for the behavioral
aspects of the DSML.

Step 3
Specify the semantic anchoring MA = A -> Ai by using UMT.

MA

SiCi

Ai

MCi MSi

SUiCS

A

MC MS

DSML

MOFADSMLi MOFASUiMTLTDSML,SUi

MOF UMT MOF

Mi: MOFADSML→MOFASUi

Transformation
T

MSi: Ai→Si

MS= MSi ○MA Semantic Unit iDSML

12

Experimental Tool Suite for
Semantic Anchoring

Operational
Semantics

Spec.

Model
Trans. Rules

(MA)

DSML
Metamdoel

(A)

GME
Toolset

GReAT Tool

Mc InstanceGenerate

Domain Model
(C)

Semantic Unit
Metamodel

(Ai)

Model
Checker

Model
Simulator

Test Case
Generator

AsmL ToolsSemantic Unit Spec.

Data Model

Instance

XSLT ASM Semantic ASM Semantic
FrameworkFramework

Metamodeling and Model Transformation Metamodeling and Model Transformation
ToolsTools

Formal Framework for Semantic Units Formal Framework for Semantic Units
SpecificationSpecification

Domain Model
(Ci)

Abstract
Data Model

Metamodeling and Model
Transformation Tools

GME: Provide a MOF-based
metamodeling and modeling
environment.
GReAT: Build on GME for
metamodel to metamodel
transformation.

Tools for Semantic Unit
Specification

ASM: A particular kind of
mathematical machine, like the
Turing machine. (Yuri Gurevich)
AsmL: A formal specification
language based on ASM.
(Microsoft Research)

Transformation
Engine

Example: HFSML => FSM-SU

Operational
Semantics

Spec.

Model
Trans. Rules

(MA)

Transformation
Engine

HFSML
Metamodel

(A)

GME
Toolset

GReAT Tool

Mc InstanceGenerate

Domain Model
(C)

FSM
Metamodel

(Ai)

FSM-SU Specification

Data Model

Instance

XSLT
ASM Semantic ASM Semantic

FrameworkFramework

FSM Model
(Ci)

Abstract
Data Model

13

Example: HFSML => FSM-SU

Operational
Semantics

Spec.

Model
Trans. Rules

(MA)

Transformation
Engine

HFSML
Metamodel

(A)

GME
Toolset

GReAT Tool

Mc InstanceGenerate

Domain Model
(C)

FSM
Metamodel

(Ai)

FSM-SU Specification

Data Model

Instance

XSLT
ASM Semantic ASM Semantic

FrameworkFramework

FSM Model
(Ci)

Abstract
Data Model

structure Event

 eventType as String

class State

 id as String

 initial as Boolean

 var active as Boolean = false

class Transition

 id as String

abstract class FSM

 id as String

 abstract property states as Set of State

 get

 abstract property transitions as Set of Transition

 get

 abstract property outTransitions as Map of <State, Set of Transition>

 get

 abstract property dstState as Map of <Transition, State>

 get

 abstract property triggerEventType as Map of <Transition, String>

 get

 abstract property outputEventType as Map of <Transition, String>

 React (e as Event) as Event?

 step

 let CS as State = GetCurrentState ()

 step

 let enabledTs as Set of Transition = {t | t in outTransitions (CS) where

e.eventType = triggerEventType(t)}

 step

 if Size (enabledTs) = 1 then

 choose t in enabledTs

 step

 // WriteLine ("Execute transition: " + t.id)

 CS.active := false

 step

 dstState(t).active := true

 step

 if t in me.outputEventType then

 return Event(outputEventType(t))

 else

 return null

 else

 if Size(enabledTs) > 1 then

 error ("NON-DETERMINISM ERROR!")

 else

 return null

Example: HFSML => FSM-SU

Operational
Semantics

Spec.

Model
Trans. Rules

(MA)

Transformation
Engine

HFSML
Metamodel

(A)

GME
Toolset

GReAT Tool

Mc InstanceGenerate

Domain Model
(C)

FSM
Metamodel

(Ai)

FSM-SU Specification

Data Model

Instance

XSLT
ASM Semantic ASM Semantic

FrameworkFramework

FSM Model
(Ci)

Abstract
Data Model

14

Heterogeneous DSMLs

Heterogeneity of systems
Complex systems are composed of heterogeneous
components using heterogeneous interactions.
Modeling and design of heterogeneous systems is a
significant challenge.

Heterogeneity of tool chains
Tool chains supporting domain-specific design flows
integrate modeling, analysis and synthesis tools using
DSMLs with overlapping semantics.

The semantics of a heterogeneous DSML is
probably not captured by a single predefined
semantic unit.

Compositional Specification
of Semantics

Structural Composition yields the composed Abstract Data Model,
where g1, g2 are the partial maps between

concepts in AC, ASU1, and ASU2 .
Behavioral composition is completed by the RC set of rules that together
with RSU1 and RSU2 form the R rule set for the composed semantics.

RC

SC

m ∈ MC = I(AC)

RSU1

SSU1

mSU1 ∈ MSU1 =
= I(ASU1)

RSU2

SSU1

mSU2 ∈ MSU2 =
= I(ASU2)

g1 : AC → ASU1 g2 : AC → ASU2

Get_()

Run_()

Get_()

Run_()

SU1 SU2

CS = <A, R>
A = <AC ,ASU1, ASU2, g1, g2>
R = <RC,RSU1,RSU2>

>=< 2121 ,,,, ggAAAA SUSUC

Remark: The behavioral
composition specifies a
controller, which restricts the
executions of actions. Since the
behavior of the component
semantic units can be described
as partial orders on the sets of
actions they can perform, the
behavioral composition can be
modeled mathematically as a
composition of the partial
orders.

15

Example: EFSM

EFSM has been developed by GMR to specify vehicle motion control (VMC)
software.
The SEFSM model is a synchronous reactive system including a set of
components communicating through event channels and data channels.
A SEFSM component is an FSM-based model, which integrates a set of
stateless computational functions that consume input data and produce
output data.
Events determine which components are to be activated and the order of
activations.
Primary contributor: Kai Chen, Motorola Research

A SEFSM Component Model A SEFSM System Model

A SEFSM system is composed of a set of components, which
communicate with each other through event channels and data
channels.

The semantics of SEFSM systems is defined as the composition
of FSM-SU and SDF-SU

A SEFSM Conceptual Structure A Compositional Structure

The Compositional Structure for
SEFSM Systems

16

Content

Application Drivers
Composition on the Abstract Syntax Layer
Composition on the Semantic Layer
Road Ahead

Road Ahead

Continue the selection and specification of a
suite of Semantic Units.
Explore and develop theory for compositional
specification of semantics.
Initiate standardization with strong
involvement of IT and Systems industry.
Strengthen/expand international collaboration.
Develop an experimental DSML Design Tool
Suite.

17

Appendices

Integrated MIC Tool Suite

GME

UDM

GReAT

Best of Breed

• Modeling Tools
• Simulators
• Verifiers
• Model Checkers

Meta
Models

Modeling

Open Tool Integration
Framework

Model Transformation

Model Data
Management

ESCHER Quality Controlled Repository:
http://escher.isis.vanderbilt.edu

OTIF

B A CK P L A NE
R EG IST R A TIO N /N OT IF IC A T IO N /T RA N S FE R SE R V IC E S

S E M A N T IC
T R A N SL A T O R

SE M AN T IC
T RA N S LA T O R

TO O L

T O O L
A D A PT O R

T O O L

T O O L
A D A PT O R

T OO L

T O O L
A D A P TO R M A N A GE R

Stan dard interface/
P rotocol

M ET A D A TA

DESERT
Component

Abstraction (TA)
Design Space
Modeling (MD)

Design Space
Encoding (TE)

Design Space
Pruning

Design
Decoding

Component
Reconstruction

Design Space
Exploration

18

SEFSM Metamodel

The abstract syntax metamodels and the textual description
of the behavior are insufficient for the precise
understanding of the semantics of SEFSM.

For example, the metamodel specification does not reveal the
complex interdependency between the event flow and the data flow
structure of the components.

Metamodel defining the SEFSM
component structure

Metamodel defining the SEFSM
system structure

The Compositional Structure
for SEFSM Components

The behavior of SEFSM components can be divided into two different
behavioral aspects: the FSM-based behavior expressing reactions to events
and the SDF-based behavior controlling the execution of computational
functions (actions and guards).

A SEFSM Component Model A Compositional Structure

19

A Derived Semantic Unit: AA-SU

The behavioral semantics specification for SEFSM
components actually specifies the semantics of a
common behavioral category that captures elementary
reactive computation behaviors.

We can consider the compositional semantics
specification of SEFSM components as a new derived
semantic unit, called Action Automaton Semantic Unit
(AA-SU).

