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doTransition (fsm as FSM, s as State, t 
as Transition) =
require s.active
step exitState (s)
step if t.outputEvent <> null then 

emitEvent (fsm, t.outputEvent)
step activateState (fsm, t.dst)

Semantic Foundation
Libraries

Domain-Specific        
Environments

Metaprogrammable
Tools, Environments   

Modeling Domain Specific Design Flows:
Examples in MIC:

• ECSL - Automotive
• ESML - Avionics
• SPML - Signal Processing
• CAPE/eLMS – Learning Technology
• AADL….

Metamodeling and Metaprogrammable Tools:
(mature or in maturation program)

• GME (Generic Model Editor)
• GReAT (Model Transformation)
• OTIF (Tool Integration Framework)
• UDM (Universal Data Model)
• DESERT (Design Space Exploration) 

Modeling Semantics (work in progress):
• Semantic “Units”
• Semantic Anchoring

Layers in Model-Integrated 
Computing

Syntactic Layer

 ∈=Υ Υ rRrCD |{),(

Semantic Domain:   
Set-Valued

Domain models
Interchange Formats

Abstract Syntax         
Meta-models

MC

MS

interface Event
structure ModelEvent
implements Event
case ModelEvent1

Structural Semantics

Modeling & Metamodeling
Model Data Management 
Model Transformation
Tool Integration
Design-Space Exploration
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Core Components of the 
Syntactic Layer

Methods and tools for modeling

CS

A

MC   MS

DSML

DSML DSML i

SiCi

Ai

MCi  MSi  

DSMLi

MOFADSMLi

MOF

MOFADSMLi

MOF

Methods and tools for metamodeling
Industrial standard metamodeling language: MOF (or some others)

Transformation
T

MTLTDSML,DSMLi

UMT

MA

Methods and tools for model transformations 
Formal metamodel transformation language: 
Unified Model Transformation Language. 

Abstract Syntax and Transformations: Meta-Models 
Common Semantic Domain: Hybrid Automata

Domain Models and Tool Interchange Formats: Tool Chains 
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(Experimental tool chain)

“Front-End View” of a 
Typical MIC Tool Chain
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Common Semantic Domain: Hybrid Automata

Domain Models and Tool Interchange Formats: Tool Chains 
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Abstract Syntax and Transformations: Meta-Models 

SL/SF
Meta-Model

ECSL-DP 
Meta-Model

AIRES
Meta-Model

CANOE

DESERT
Meta-Model

SFC
Meta-Model

ECSL-DP
SFC

SL/SF
ECSL-DP

ECSL-DP
MOML

ECSL-DP
AIF

SL/SF
DESERT

“Back-plane View” of a 
Typical MIC Tool Chain

Need for DSML Composition

Simulink/StateFlow
(DSMLSL/SF)

Component Model 

SW Architecture Model
(DSMLSL/SF,CM)

SL/SF
Functional blocks – SW Component Mapping

Objective: Optimize the SW architecture 
by selecting a component model and by 
allocating functions to components.
Platform:  Heterogeneous Dataflow 
Component Model
Tools:
GME, GReAT, C Compiler, WCET Analyzer

CM
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Compositional Metamodeling

Goal: Composing modeling languages (not 
models)
Metamodel composition methods in the Generic 
Modeling Environment (GME):

Class Merge
Metamodel Interfacing
Class Refinement
Template Instantiation
Metamodel Transformations

Example: Metamodel
Interfacing
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doTransition (fsm as
FSM, s                
as State, t as
Transition) =

Semantic Domain   
Meta-models

Domain models
Interchange Formats

Abstract Syntax         
Meta-models

MC

MS

Behavioral Semantics

Semantics of DSMLs: Current 
Status

• Usually, specification stops at the level of abstract
syntax metamodels (“static semantics”)

• Specification of behavioral semantics (if done)
– involve major effort due to overly complex 

modeling languages, 
– use a wide range of formalisms and

• Impact is far-reaching
– tool chains are closed and built around 

loosely defined “conventions” and proprietary 
interpretations of semantics instead of
standards 

– potential semantic mismatches create 
unacceptable risk for safety critical applications

Major roadblock that slows down acceptance of
model-based design technology.



9

Transformational 
Specification of Semantics

Specify mapping to another language with well-
defined semantics.

Transformation
T

Well-defined DSML i

CS

A

MC   MS

DSML

DSML MS= MSi ○MA

MOFADSMLi MTLTDSML,DSMLi

MOF UMT

SiCi

Ai

MCi  MSi  

DSMLi

MSi: Ai→Si

MOFADSMLi

MOF

Mi: MOFADSML→MOFADSMLi

Use a formal metamodeling framework 
Industrial standard metamodeling language: MOF 
Formal metamodel transformation language: 
Unified Model Transformation Language. 

MA

SiCi

Ai

MCi  MSi  

DSMLi

MSi: Ai→Si

MOFADSMLi

MOF

Where are these coming from?

System Composition Dimension: 
Core Modeling Aspects

Component Behavior

Structure

Interaction

Scheduling /
Resource Allocation

Modeled on different levels of abstraction:
• State-based modeling (FSM, Time Automata, Cont. 

Dynamics, Hybrid), fundamental role of time models
• Precise relationship among abstraction levels
• Research: dynamic/adaptive behavior 

Expressed as a system topology :
• Module Interconnection (Nodes, Ports, Connections)
• Hierarchy
• Research: dynamic topology

Describes interaction patterns among components:
• Set of well-defined Models of Computations (MoC)

(SR, SDF, DE,…)
• Heterogeneous, but precisely defined interactions
• Research: interface theory (time, resources,..) 

Mapping/deploying components on platforms:
• Dynamic Priority
• Behavior guarantees
• Research: composition of schedulers 
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Semantic Units

Semantic Units
Capture the semantics of a finite set of basic dynamic behavioral 
categories, such as FSM, DES, TA. 
Capture the semantics of basic interaction categories (Model of 
Computation, MoCs), such as SDF, PN, …
Specified in a formal semantics framework.
Develop a set of simple modeling languages for the semantic 
units.

MA

SiCi

Ai

MCi  MSi  

SUiCS

A

MC   MS

DSML

MOFADSMLi MOFASUiMTLTDSML,SUi

MOF UMT MOF

Mi: MOFADSML→MOFASUi

Transformation
T

MSi: Ai→Si

MS= MSi ○MA Semantic Unit iDSML

Search for a Formal Framework

Specification style: Operational semantics
Solid mathematical foundation
Tool support for core use cases:

Readability (clear syntax and understandable semantics)
Validation/exploration of semantics (executable 
specification)
Verification of semantic equivalence (generation of 
“reference traces”, integratability)

After evaluating several frameworks (Z, TLA+,..)
we selected ASM and the AsmL tool suite (MSR).
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Example: Synchronous Data Flow
structure Value 

  case IntValue 

    v as Integer 

  case DoubleValue 

    v as Double 

  case BoolValue 

    v as Boolean 

 

//Data Token, it may contain a value or a null data     

structure Token 

  value as Value? 

 

//Data Port, when exist is true, the port has an effective data token    

class Port 

  id        as String 

  var token as Token   = Token (null) 

  var exist as Boolean = false 

 

//Data Channel connecting two data ports 

class Channel 

  id as String 

  srcPort as Port 

  dstPort as Port 

 

//A Node is a basic unit is the Data Flow. It may be an action or a Guard  

abstract class Node 

  id as String 

 

  abstract property inputPorts  as Seq of Port 

    get 

  abstract property outputPorts as Seq of Port 

    get 

  //The Run method takes tokens from its input ports, do actions and set output 

  //tokens in the output ports  

  abstract Fire () 

 

 

//Dynamic Data Flow Semantic Unit 

abstract class SDF 

  id as String 

 

  abstract property nodes as Set of Node 

    get 

  abstract property channels as Set of Channel 

    get 

  abstract property inputPorts as Seq of Port 

    get 

  abstract property outputPorts as Seq of Port 

    get 

 

Run (n as Node) 

    require n in me.EnabledNodes () 

    step 

      n.Fire () 

    step 

      if exists p in n.inputPorts where p.exist then 

        error ("After the firing of a node, all input tokens should be consumed 

by the node.") 

    step 

      if exists p in n.outputPorts where not p.exist then 

        error ("After the firing of a node, each of its output port should have 

one output token.") 

    step 

      forall c in me.channels where c.srcPort.exist 

        if c.dstPort.exist then 

          error ("A input port receives more than one token.") 

        else 

          WriteLine ("Channel " + c.id + " is sending data tokens.") 

          c.dstPort.token := c.srcPort.token 

          c.dstPort.exist := true 

        c.srcPort.exist := false 

 

  //Return all nodes in the SDF that have all its required data tokens to fire. 

  EnabledNodes () as Set of Node 

    return {n | n in me.nodes where forall p in n.inputPorts where p.exist} 

 

  Initialize () 

    forall p in me.inputPorts where p.exist 

      forall c in me.channels where p.id = c.srcPort.id 

        c.dstPort.token := c.srcPort.token 

        c.srcPort.exist := false 

        c.dstPort.exist := true 

 

  ClearPorts () 

    forall c in me.channels 

      if c.srcPort.exist then 

        c.srcPort.exist := false 

      if c.dstPort.exist then 

        c.dstPort.exist := false 

 

Abstract Data Model Model Interpreter

DSML Design Through 
Semantic Anchoring

Step 1  
Specify the DSML <A, C, Mc> by using MOF-based metamodels.

Step 2  
Select appropriate semantic units L = < Ai, Ci, MCi, Si, MSi> for the behavioral 
aspects of the DSML.                                            

Step 3  
Specify the semantic anchoring MA = A -> Ai by using UMT.

MA

SiCi

Ai

MCi  MSi  

SUiCS

A

MC   MS

DSML

MOFADSMLi MOFASUiMTLTDSML,SUi

MOF UMT MOF

Mi: MOFADSML→MOFASUi

Transformation
T

MSi: Ai→Si

MS= MSi ○MA Semantic Unit iDSML
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Experimental Tool Suite for 
Semantic Anchoring

Operational 
Semantics 

Spec.

Model 
Trans. Rules

(MA)

DSML 
Metamdoel

(A)

GME 
Toolset

GReAT Tool

Mc InstanceGenerate

Domain Model
(C)

Semantic Unit 
Metamodel

(Ai)

Model 
Checker

Model 
Simulator

Test Case
Generator

AsmL ToolsSemantic Unit Spec.

Data Model

Instance

XSLT ASM Semantic ASM Semantic 
FrameworkFramework

Metamodeling and Model Transformation Metamodeling and Model Transformation 
ToolsTools

Formal Framework for Semantic Units Formal Framework for Semantic Units 
SpecificationSpecification

Domain Model
(Ci)

Abstract 
Data Model

Metamodeling and Model 
Transformation Tools  

GME: Provide a MOF-based 
metamodeling and modeling 
environment. 
GReAT: Build on GME for 
metamodel to metamodel 
transformation. 

Tools for Semantic Unit 
Specification  

ASM: A particular kind of 
mathematical machine, like the 
Turing machine. (Yuri Gurevich)
AsmL: A formal specification 
language based on ASM. 
(Microsoft Research)

Transformation
Engine

Example: HFSML => FSM-SU

Operational 
Semantics 

Spec.

Model 
Trans. Rules

(MA)

Transformation
Engine

HFSML 
Metamodel

(A)

GME 
Toolset

GReAT Tool

Mc InstanceGenerate

Domain Model
(C)

FSM 
Metamodel

(Ai)

FSM-SU Specification

Data Model

Instance

XSLT
ASM Semantic ASM Semantic 

FrameworkFramework

FSM Model
(Ci)

Abstract 
Data Model
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Example: HFSML => FSM-SU 

Operational 
Semantics 

Spec.

Model 
Trans. Rules

(MA)

Transformation
Engine

HFSML 
Metamodel

(A)

GME 
Toolset

GReAT Tool

Mc InstanceGenerate

Domain Model
(C)

FSM 
Metamodel

(Ai)

FSM-SU Specification

Data Model

Instance

XSLT
ASM Semantic ASM Semantic 

FrameworkFramework

FSM Model
(Ci)

Abstract 
Data Model

structure Event 

  eventType as String 

 

class State 

  id         as String 

  initial    as Boolean 

  var active as Boolean = false 

 

class Transition 

  id as String 

 

abstract class FSM 

  id as String 

 

  abstract property states as Set of State 

    get 

  abstract property transitions as Set of Transition 

    get 

  abstract property outTransitions as Map of <State, Set of Transition> 

    get 

  abstract property dstState as Map of <Transition, State> 

    get 

  abstract property triggerEventType as Map of <Transition, String> 

    get 

  abstract property outputEventType as Map of <Transition, String> 

   

 React (e as Event) as Event? 

    step 

      let CS as State = GetCurrentState () 

    step 

      let enabledTs as Set of Transition = {t | t in outTransitions (CS) where 

e.eventType = triggerEventType(t)} 

    step 

      if Size (enabledTs) = 1 then 

        choose t in enabledTs 

          step 

           // WriteLine ("Execute transition: " + t.id) 

            CS.active := false 

          step 

            dstState(t).active := true 

          step 

            if t in me.outputEventType then 

              return Event(outputEventType(t)) 

            else 

              return null 

      else 

        if Size(enabledTs) > 1 then 

          error ("NON-DETERMINISM ERROR!") 

        else 

          return null 

           

Example: HFSML => FSM-SU 

Operational 
Semantics 

Spec.

Model 
Trans. Rules

(MA)

Transformation
Engine

HFSML 
Metamodel

(A)

GME 
Toolset

GReAT Tool

Mc InstanceGenerate

Domain Model
(C)

FSM 
Metamodel

(Ai)

FSM-SU Specification

Data Model

Instance

XSLT
ASM Semantic ASM Semantic 

FrameworkFramework

FSM Model
(Ci)

Abstract 
Data Model
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Heterogeneous DSMLs 

Heterogeneity of systems 
Complex systems are composed of heterogeneous 
components using heterogeneous interactions. 
Modeling and design of heterogeneous systems is a 
significant challenge. 

Heterogeneity of tool chains 
Tool chains supporting domain-specific design flows 
integrate modeling, analysis and synthesis tools using 
DSMLs with overlapping semantics. 

The semantics of a heterogeneous DSML is 
probably not captured by a single predefined 
semantic unit.

Compositional Specification 
of Semantics

Structural Composition yields the composed Abstract Data Model,
where g1, g2 are the partial maps between 

concepts in AC, ASU1, and ASU2 .
Behavioral composition is completed by the RC set of rules that together 
with RSU1 and RSU2 form the R rule set for the composed semantics.

RC

SC

m ∈ MC = I(AC)

RSU1

SSU1

mSU1 ∈ MSU1 = 
= I(ASU1)

RSU2

SSU1

mSU2 ∈ MSU2 = 
= I(ASU2)

g1 : AC → ASU1 g2 : AC → ASU2

Get_()

Run_()

Get_()

Run_()

SU1 SU2

CS = <A, R>
A    = <AC ,ASU1, ASU2, g1, g2>
R    = <RC,RSU1,RSU2>

>=< 2121 ,,,, ggAAAA SUSUC

Remark: The behavioral 
composition specifies a 
controller, which restricts the 
executions of actions. Since the 
behavior of the component 
semantic units can be described 
as partial orders on the sets of 
actions they can perform, the 
behavioral composition can be 
modeled mathematically as a 
composition of the partial 
orders.
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Example: EFSM 

EFSM has been developed by GMR to specify vehicle motion control (VMC) 
software.
The SEFSM model is a synchronous reactive system including a set of 
components communicating through event channels and data channels.  
A SEFSM component is an FSM-based model, which integrates a set of 
stateless computational functions that consume input data and produce 
output data. 
Events determine which components are to be activated and the order of 
activations.
Primary contributor: Kai Chen, Motorola Research

A SEFSM Component Model A SEFSM System Model

A SEFSM system is composed of a set of components, which 
communicate with each other through event channels and data 
channels. 

The semantics of SEFSM systems is defined as the composition 
of FSM-SU and SDF-SU

A SEFSM Conceptual Structure A Compositional Structure

The Compositional Structure for 
SEFSM Systems
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Content
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Road Ahead

Continue the selection and specification of a 
suite of Semantic Units. 
Explore and develop theory for compositional 
specification of semantics.
Initiate standardization with strong 
involvement of IT and Systems industry.
Strengthen/expand international collaboration. 
Develop an experimental DSML Design Tool 
Suite.
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Appendices

Integrated MIC Tool Suite

GME

UDM

GReAT

Best of Breed 

• Modeling Tools
• Simulators
• Verifiers
• Model Checkers

Meta
Models

Modeling

Open Tool Integration
Framework

Model Transformation

Model Data 
Management

ESCHER Quality Controlled Repository:
http://escher.isis.vanderbilt.edu

OTIF
 

B A CK P L A NE  
R EG IST R A TIO N /N OT IF IC A T IO N /T RA N S FE R  SE R V IC E S 

S E M A N T IC  
T R A N SL A T O R  

SE M AN T IC  
T RA N S LA T O R  

TO O L  

T O O L  
A D A PT O R  

T O O L 

T O O L  
A D A PT O R  

T OO L  

T O O L  
A D A P TO R  M A N A GE R  

Stan dard  interface/ 
P rotocol 

M ET A D A TA  

DESERT
Component

Abstraction (TA)
Design Space
Modeling (MD)

Design Space
Encoding (TE)

Design Space
Pruning 

Design 
Decoding

Component
Reconstruction

Design Space 
Exploration
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SEFSM Metamodel

The abstract syntax metamodels and the textual description 
of the behavior are insufficient for the precise 
understanding of the semantics of SEFSM.

For example, the metamodel specification does not reveal the 
complex interdependency between the event flow and the data flow
structure of the components.  

Metamodel defining the SEFSM
component structure

Metamodel defining the SEFSM
system structure

The Compositional Structure 
for SEFSM Components

The behavior of SEFSM components can be divided into two different 
behavioral aspects: the FSM-based behavior expressing reactions to events 
and the SDF-based behavior controlling the execution of computational 
functions (actions and guards). 

A SEFSM Component Model A Compositional Structure
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A Derived Semantic Unit: AA-SU

The behavioral semantics specification for SEFSM 
components actually specifies the semantics of a 
common behavioral category that captures elementary 
reactive computation behaviors.

We can consider the compositional semantics 
specification of SEFSM components as a new derived 
semantic unit, called Action Automaton Semantic Unit
(AA-SU). 


