
KTH/ESDlab/HT 8/24/2006 1

Autonomous NoC
aNOC

A co-operative project between KTH and University of Turku

Prof. Hannu Tenhunen
Director, Turku Centre for Computer Science, Finland

Royal Institute of Technology, Sweden
Fudan University, Shanghai, China

hannu@ele.kth.se

KTH/ESDlab/HT 8/24/2006 2

Outline
Trends at-large in electronic integration
Autonomous NoC
Architecture for agent-based aNoC

KTH/ESDlab/HT 8/24/2006 3

Technology evolution at-large

Algorithm on a Chip Hardwired Computation

Hardwired Communication
Algorithm on a Chip Hardwired Computation

Hardwired Communication

System on a Chip
Programmable Computation

Hardwired Communication
System on a Chip

Programmable Computation

Hardwired Communication

Network on a Chip
Programmable Computation

Programmable Communication
Network on a Chip

Programmable Computation

Programmable Communication

Work in 1980s on VLSI, DSP-ASIC, silicon
compilation, layout genrators, design libraries
Transistor/gate centric

Work in 1990s. Synthesis centric research,
Core processors, busses, reusability
Low power. Interconenct centric

Communicaton centric

Next step: Autonomic chips: mitigates variability in technology

KTH/ESDlab/HT 8/24/2006 4

Motivation and approach: aNoC
Systems can have probalistic beaviour due
– Process induced random defects and failures
– Large scale parametric variations on device and circuit level due to nanoscale

operation
– Network based communication will induce ”internet” like behaviour to on-chip

trafic
– Software and application layers will see a variable resource pool for tasks in-hand

New engineering approach needed to handle the inherent uncertainty for building
unconditonally predictable and reliable/dependable systemts from undependable
subcomponents
– We propose to approach the problem by using a meet-in-the-middle strategy,

where we integrate system, technology, agent and CAD views.
– We try to provide a new design approach that enables us to implement efficiently

complex communication and computation system on future nanotechnology
platform. In this project we add a new layer above the traditional NoC approach,
which provides application functionality and communication resources.

– The purpose of this layer is to provide system level intelligence that is necessary
for implementing dynamically reconfigurable systems that function in a reliable
manner in non-robust technology basis. This has a clear impact to both
application and platform designers.

KTH/ESDlab/HT 8/24/2006 5

NoC design flow

KTH/ESDlab/HT 8/24/2006 6

aNOC: run time services firmware

KTH/ESDlab/HT 8/24/2006 7

Fault-tolerancy Issues
Leves of fault-tolerancy
– Algorithm

» Coding for redundancy (e.g. Space-time coding)
» Modularity

– System/Architecture
» Parallelisation and partitioning
» Communication architecture / Link design

– Logic/physical
» Fault-tolerant logic and components
» Sensors

Case studies
– Radio architectures
– Communication architectures

KTH/ESDlab/HT 8/24/2006 8

System Management: agents + NoC = aNoC
Key issues in system level decisions

– Modularity (regular structures, local
control and design)

– Concurrency (high performance, low
noise, local communication)

– Reconfigurability (platform life-time,
redesign cycles)

– Fault tolerancy (high yield,
chip/wafer level scalability)

– Scalability (design effort, architecture
and performance)

System control is heading from
synchronous systems towards
asynchronous ones (control and
communication)
Future systems need to be seen as
distributed systems

– An interconnected collection of
autonomous computers, processes, or
processors

An agent is anything that can be
viewed as perceiving its environment
through sensors and acting upon that
environment through actuators
Several different type of agents exist:

– Simple reflex agents
– Model based reflex agents
– Goal-based agents
– Utility-based agents
– Learning agents

Dynamic reconfigurability is needed to
adapt a system to changing resource
needs (reschedule operations) or to
replace faulty elements

KTH/ESDlab/HT 8/24/2006 9

Actual Design Phase vs. Self-Design
In order to optimise system
performance and guarantee Quality of
Service (QoS), I can’t do all decision
during actual design phase, some
decision need to be post-boned into
execution phase
We need build a systematic support for
self-design in design methodologies
The division of responsibilities
between the design phase and the
execution need to be done.
Tasks that are more critical can be
given more resources.

Actual design phase
Verification of dynamic components
and systems build upon them
Need for very strong modularity
(system/control, algorithms,
architectures), otherwise complexity
becomes too high

Self-design
Quite simple and homogenous
architectures
Self-design covers both application
and implementation level issues
Can be done e.g. by using intelligent
agents
What type of support need to be given
by components and environment
before execution phase
Self-verification?

KTH/ESDlab/HT 8/24/2006 10

Adding of a New Layer to Implementation Platforms

Autonomy

System level intelligence
Agent/control layer

Current NoC approach
NoC platform
Functional SW

Communication

Functionality

KTH/ESDlab/HT 8/24/2006 11

Abstraction Levels

Application mapping

Design
constraints

Application level
Case Studies: Algorithms, networks, etc.

Conversion level

Physical level
Platforms: CNN, AET, etc.

Intelligence / Control

Technology mapping

Application mapping

Design
constraints

KTH/ESDlab/HT 8/24/2006 12

Convergence of Four Perspectives

System view

Technology view

Meet-in-the-middle

CAD viewAgent view

KTH/ESDlab/HT 8/24/2006 13

Agent Based Approach to Dynamic Systems (1)
Each agent can contain application
information, an autonomous controller
for decisions, performance analysis
logic, and reconfigurability functions.
The agents monitor their environment
and perform configuration actions
based on the information provided by
their “senses”.

Agent implementations
– HW vs. SW partiotioning
– Granularity

Multi-agent system
– Hierarchy, concurrency
– Asynchronous operations, agent

communication
– Cost-functions for self-design

An agent has two primary tasks
– Supervise its own operations
– Follow fault/error free operations

of the neighbour agents
» Monitoring of power

consumption
» In a similar manner

communication or response
time of neighbours can be
monitored and managed

» Adjusting amount of internal
processing capacity for
application and fault tolerance
purposes (optimisation)

Environm
ent

Sensor

Actuator

Percepts

Actions

?

Agent

KTH/ESDlab/HT 8/24/2006 14

Agent Based Approach to Dynamic Systems (2)
Dynamic implementation

– System change its implementations due to
variation in its performance needs and
location issues, detected faults/errors, or
system upgrades

– Requires reconfigurable or programmable
platform

– Homogenous processing elements and
interconnect solutions are preferable

Dynamic functionality
– System adapts/tracks its operations to

changed parameters in data content or
environment (e.g. adaptive algorithms)

In localised control strategy we utilise data-
driven type of approaches for the
application level synchronisation, while the
agents can be synchronised using normal
asynchronous handshakes¨.
To simplify agent functionalities we are
targeting to implement links between agents
using fully bi-directional asynchronous
handshaking.

Synchronisation or timing
– New configuration should operate

correctly after configuration (timing,
functionality)

– Synchronisation should be maintained
during and after reconfiguration

– In online operations, system
functionality is not allowed to be
disturbed due to reconfiguration
(blocking, redundancy)

Cost-Metrics
– Physical (measured) values: current,

voltage or power consumption
– Cut-size announce the number of

interconnected signals between to units
» Signals can be weighted

differently
– Functional and physical timing

» Performance
» Reaction-time or latency

– Processing capacity

KTH/ESDlab/HT 8/24/2006 15

Agent Hierarchy

Application agent
– Recognise application needs for system

reconfiguration (change of
functionality, performance
enhancement)

Platform agent
– Forms interface between application

and platform
Cluster agent

– Performs reconfiguration if necessary
(application needs, fault-tolerance)

Cell agent
– Routing, cell diagnostics

API

KTH/ESDlab/HT 8/24/2006 16

Platform Hierarchy

CELL CELL CELL CELL

CELL CELL CELL CELL

CELL CELL CELL CELL

CELL CELL CELL CELL

CELL CELL CELL CELL

CELL CELL CELL CELL

Cluster

Platform

Environm
ent

Sensor

Actuator

Percepts

Actions

FU

Agent

Cell

KTH/ESDlab/HT 8/24/2006 17

aNoC QoS
The QoS obtainable is dependent of the
variability. General goal is to obtain
reliable operations based on awareness of
the resource situation in the routers. We
need to introduce a measure of intelligence
in the routers consisting of

– awareness of the situation concerning the
types of variability;

– the ability to reason on the acquired
knowledge;

– local routing strategies achieving
dependable global results

Sensing devices establishing dynamic
awareness of the operational situation
in terms of computing load, power
availability and local resource quality.
Reasoning strategies leading to routing
strategies guaranteeing adaptive QoS
and dependable operations.
Efficient router design implementing
the cognitive elements and agents.

KTH/ESDlab/HT 8/24/2006 18

aNoC for MIMO Front-end for UMTS

FOC, RAKE: size A, reliability R
DDC, AGC, RRCos, CE: size 2A, reliability R2

KTH/ESDlab/HT 8/24/2006 19

MIMO Front-end for UMTS

Lehtonen et al. ISCAS 2006

KTH/ESDlab/HT 8/24/2006 20

Summmary

Technology development
Roadmapping

Parallel platforms

Parallel algorithms

Reconfigurable systems

Autonomous,
self-aware systems

Scaling
Locality

Concurrency
Modularity

Diverse cells
And system
requirements

Fault tolerancy
Adaptability

Focus

KTH/ESDlab/HT 8/24/2006 21

Summary
Key aspects for successful nano-regime NoC designs are build-in fault-tolerancy,
flexible use of resources, and easy scalability.
Key innovation to be solved

– Self-design. Extending design methodologies from actual design phase to self-design.
– Unlimited scalability.Solving yield and design methodology limitations to exploit highly

parallel and highly homogenous platforms.This needs work with algorithms, system
concepts and architectures (towards homogenous processing units)

– Design layers and abstractions. A new meta-design layer to provide system level
intelligence to ensure dynamic use of resources and reliable implementations in non-robust
technology basis.

More error-prone manufacturing due to finer scale technologies
– How to build robust, error-free and highly scalable systems, when basic building blocks

can be defective due to static and dynamic errors or failures.
– Fault-tolerance issues in all levels of abstraction

Noise, clocking and performance problems due to current system approaches towards
higher performance demand.

– This means avoiding of global interconnections
– It can mostly be eliminated by heavily increasing concurrency in the system and algorithm

levels

KTH/ESDlab/HT 8/24/2006 22

Future Project for co-operation
Based on KTH, UTU, EPFL, TUDelft, TIMA cooperation

WP1: Application Design
Approach
T1.1 Concurrent
dependable algorithm
design
T1.2 Distributed control
strategy and insertion
T1.3 Case studies

WP3: Technology
Platforms
T3.1 Execution models
T3.2 Sensors and
actuators
T3.3 Agent
implementations

WP2: Agent Architecture
T2.1 Agent organisation
T2.2 Self-aware intelligence

WP4: Adaptive
Application/Platform
Matching
T4.1 Computation
mapping
T4.2 Communication
mapping
T4.3 Communication/
computation scheduling

T2.3 Analysis of dynamic system

WP5: Management and Dissemination

