Hardware/Software Co-Design of an FPGA-based Embedded Tracking System

Jason Schlessman¹, Cheng-Yao Chen¹, Burak Ozer² Kenji Fujino³, Kazurou Itoh³, Wayne Wolf¹

¹Department of Electrical Engineering ² Verificon Corporation Princeton University Princeton, NJ ³ Yokogawa Electric Corporation

Tokyo, Japan

Overview

- Our group assisted in hardware design for surveillance system
- Requirements included:
 - Mobile deployment
 - Speedup over PC/software based approach
 - Large scale deployment/low cost
 - Flexibility
- Yokogawa developed system requirements
- Verificon developed software version
- Princeton was to provide a hardware acceleration system

Task Decomposition

- Analyzed core of KLT algorithm for constituent tasks
- From colorspace conversion on, fractional notation required
- Convolution and matrix multiplication imply need for multipliers and adders
- Matrix inversion?

Representation

- Originally computed limits for fixed-point representation
- Feasibility measure acquired based on 14-bit data values
- Deemed insufficient for algorithmic precision
- Converted arithmetic to floating-point
 - 24-bit reduced IEEE floating-point
 - Required design of FP adder and FP multiplier
- Still reliant on standard FPGA adders and multipliers
- Necessary to consider given FPGA resources

