Formal analysis and optimization of heterogeneous networks in industrial practice

- from networked systems to MpSoC

Marek Jersak, Symtavision

Rolf Ernst, TU Braunschweig

1

Overview

- Part 1: Formal analysis in industrial practice Marek Jersak, Symtavision
- Part 2: From networked systems to MpSoC Rolf Ernst, TU Braunschweig

Formal analysis and optimization of heterogeneous networks in industrial practice

Marek Jersak, Symtavision

3

Integration Challenges

Complexity

- Hundreds of functions, many safety-critical
- □ 50+ ECUs
- Networked
- Many suppliers

Integration challenges

- Reliability, quality, liability
- Meeting SOP target
- Development and production cost

Integration Challenges: 5 buses, 55 ECUs

Typical Automotive Architecture

Many functional problems are in fact timing problems

- ECUs (temporarily) overloaded
- tasks not always schedulable
- deadlines are missed
- network (temporarily) overloaded
- messages arrive "too late" or with "too large" jitter
- messages are lost (buffer overflow)
- end-to-end deadlines of car function are missed
- stability of distributed control is compromised
- → Carefully monitor performance and timing during design and integration

Symtavision @ MPSoC 07

© Symtavision GmbH, Germany

SymTA/S Tool Suite: Scheduling Analysis and Optimization

* = work in progress

Design-Phases

Symtavision @ MPSoC 07 © Symtavision GmbH, Germany

SW-Integration on ECUs

Verification of SIL-3 Project

Verify Critical ECU Timing

Active Front Steering

- ECU trace data import
- ☐ Timing analysis using SymTA/S including sensitivity analysis
- Result: reliable performance, cost savings (use of smaller CPU)

Source: BMW

Symtavision @ MPSoC 07
© Symtavision GmbH, Germany

Integration: Tracing + Scheduling Analyse

Measurement vs. SymTA/S Analysis

- Measured, 10ms task, Response Time 6,9ms
 - □ 4 CAN, 8 SPI Interrupts, 7 preemptions by 1ms task

- □ SymTA/S Analysis, 10ms task, Response Time 9ms
 - □ 10 CAN, 8 SPI Interrupts, 9 preemptions by 1ms task, blocking

Symtavision @ MPSoC 07

© Symtavision GmbH, Germany

CAN Bus Optimization:
CAN IDs (== message priorities),
Message offsets (traffic shaping)

Reliable CAN Bus Extension

- ☐ Problem: CAN bus load high but needs to carry more frames
- □ SymTA/S: Offset /CAN Id optimization → room for new frames
- Result: Increased utilization and reliable, safe extension

Symtavision @ MPSoC 07
© Symtavision GmbH, Germany

Detailed Sensitivity Analysis

 δ response time δ offset

CAN bus load under varying dynamic load situations

Symtavision @ MPSoC 07 © Symtavision GmbH, Germany

Analyzing Several Dynamic Load Profiles

- all triggered signals considered (in direct and mixed frames)
 - → full dynamic CAN load
- subset of dynamic signals → representative CAN load

- □ no dynamic / triggered signals
- → only periodic CAN load

Comparing Dynamic Load Profiles

Architecture Use Cases (today and tomorrow)

Software Component Integration (in AUTOSAR context)

- Evaluate alternatives (,,what if ?")
 - □ Mapping
 - □ Scheduling
 - □ Communication

- □ Early
- □ Quickly
- □ Cost-efficient

Symtavision @ MPSoC 07 © Symtavision GmbH, Germany

Gated Network Analysis and Optimization

Architecture questions

- Topology
- ☐ Dimensioning of ECUs and buses
- ☐ Gateway Design
- ☐ Function → ECU Mapping
- ☐ Signal → Communication Mapping

End-to-end Timing Analysis is Key

- Verification and visualization of end-to-end timing
- ☐ Optimization (adding synthesis capabilities) (work in progress)

Symtavision @ MPSoC 07 © Symtavision GmbH, Germany

Black-box System Integration

Component Dependencies and Interfaces

Interfaces for the Supply Chain

- Integrators: distribute the available time, bandwidth and flexibility among the suppliers
 - □ no details about subsystem needed

- Suppliers: work locally with available time, bandwidth and flexibility
 - □ optimally fulfill requirements
 - □ no details about "rest of system" needed

Black-Box integration example (OEM view)

Symtavision @ MPSoC 07 © Symtavision GmbH, Germany

Contact

Symtavision GmbH info@symtavision.com Frankfurter Str. 3b Tel +49 886 179-0

38122 Braunschweig

Germany sales@symtavision.com

Tel +49 886 179-25

www.symtavision.com Fax +49 886 179-29

Formal analysis and optimization of heterogeneous networks in industrial practice

- from networked systems to MpSoC

Rolf Ernst, TU Braunschweig

29

Lessons learned

- formal performance analysis and optimization have proven to be practical in industrial design
 - in different phases of a design
 - even in very complex architectures and design processes such in automotive electronics with many players
 - greatly improving predictability and lowering design risk
- main practical challenges are
 - acquisition of basic model data
 - obtained by a variety of techniques from estimation to tracing to WCET analysis
 - design process enhancement
 - · tool coupling, method coupling
 - feasible even in conservative industries
 - libraries
 - simplified in case of standardization

But – MpSoC needs different model

- distributed embedded systems (automotive)
 - local computation and memory resources
 - network mainly used for process communication

MpSoC

- process communication and global memory accesses are superimposed
- more complex traffic with feedback to process execution

© R. Ernst, TU Braunschweig, 2007

31

Process timing analysis

- traditional: task "execution" times are combined to calculate response times
- need to include memory accesses for MPSoCs!

MpSoC process execution

MpSoC process performance analysis

Solution:

- derive upper total interference bound using formal analysis
- superimpose and continue with classical analysis

34

Enhanced SymTA/S analysis engine

 so far: fixed point solution over local analysis

environment model

input traffic description

Shared resource transaction analysis

 enhanced by nested loop for process execution time determination with transaction and interference local analysis (WCET + WCRT)

output traffic description

until convergence or non-schedulability

© R. Ernst, TU Braunschweig, 2007

35

Data needed for enhanced analysis

process model

- Task behavior on CPU
 - process execution time
 - number and target of transactions
- Bus / Network
 - latency and arbitration policy
- Shared Memory
 - timing
 - arbitration and scheduling policy
 - similar for coprocessors

How to acquire these data?

- task behavior on CPU
 - execution time
 - simulation-traces
 - WCET analysis where applicable/available
 - transactions
 - simulation traces
 - cache traces
 - task communication analysis where applicable
- bus / network
 - scheduling model
 - formal system level analysis using SymTA/S
- memory
 - word-level timing (from datasheet)
 - arbitration model

© R. Ernst, TU Braunschweig, 2007

37

Courtesy: Pierre Paulin 38

Application: MPEG 4 Contour Detection

- contour detection algorithm from École Polytechnique de Montreal (Gabriela Nicolesu)
- 2 4 processor architecture
- 2 threads per processor
 - round-robin scheduling
- StepNP simulator available

© R. Ernst, TU Braunschweig, 2007

39

Application model

Execution Timing - Example

- system worst case task response time for task T1 based on single task simulation data
- shows little worst case interference, bus is sufficient in this simple example

© R. Ernst, TU Braunschweig, 2007

41

Results of STMicroelectronics Example

- simulation
 - system simulation completely performed with StepNP simulator
- analysis
 - single task simulation
 - SymTA/S analysis based on single task simulation data

Individual Application Functions

42

System Level Prediction

Worst Simulated Behavior

Predicted Worst-Case

- Very fast prediction of worst case behavior considering

 Bus/Network Congestion (if any)
 - Memory Congestion
 - coprocessors ...
- Possible investigation of processor sharing, degree of parallelism / pipelining, ...

© R. Ernst, TU Braunschweig, 2007

43

Conclusion

- new approaches to formal performance analysis have found their way into industrial practice
- worst case design successfully used for predictable and robust systems integration – supported by tools
- more complex behavior of MpSoC due to conflicting task communication and memory access
- new technique for MpSoC presented and demonstrated with a practical experiment

Acknowledgement - Literature

- more info can be found
 - www.ida.ing.tu-bs.de
- the experiments and part of the slide figures have been provided by Simon Schliecker and Mircea Negrean

45