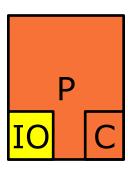
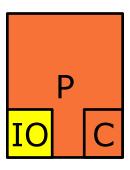


Clock System Design Risks and Opportunities under the MPSoC Paradigm


Olivier Franza

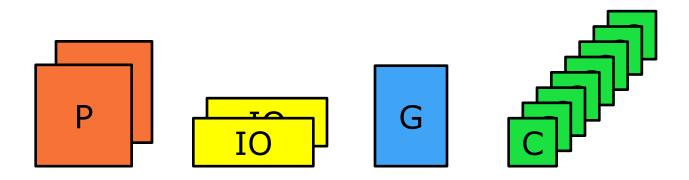
Olivier.Franza@intel.com

- Monolithic Microprocessor Clock System Designs
- MPSoC Needs the "Building-block" Methodology
- Future MPSoC Clock System Designs
- Summary


- Monolithic Microprocessor Clock System Designs
- MPSoC Needs the "Building-block" Methodology
- Future MPSoC Clock System Designs
- Summary

Monolithic Microprocessor Clock System Designs


- Requirements
 - Single main clock frequency
 - Big clock distribution
 - Single clock generation block
 - Divided or derived clocks for IO
 - Simple boundary crossings


Monolithic Microprocessor Clock System Designs

- Advantages
 - Simple design
- Drawbacks
 - Not optimized for power single frequency operating point
 - Not modular design targeted to specific product

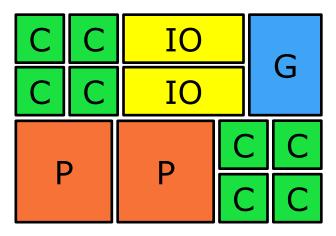
- Monolithic Microprocessor Clock System Designs
- MPSoC Needs the "Building-block" Methodology
- Future MPSoC Clock System Designs
- Summary

MPSoC Needs – the "Building-block" Methodology

- Where does performance increase reside for nextgeneration microprocessors?
 - Parallelism: multi-cores, many-cores, multi-threading, virtualization
 - Numerous nimbler (heterogeneous) processing units
 - Added application-specific hardware (graphic, chipset, ...)
 - Trade frequency for parallelism
 - It's a better choice for performance, power consumption, design complexity, and turn-around-time
 - No more frequency boosts? Still good for parts binning and marginal product life cycle updates
 - Larger more efficient on-chip caches
 - Increased bandwidth

MPSoC Needs – the "Building-block" Methodology

- "Building-block" requirements
 - Modularity
 - Ease module placement by defining standard block size (Lego)
 - Allow multiple interface attachments
 - Define modular network between modules with common protocol
 - Interchangeability
 - Application specific blocks can be replaced depending on product target
 - Manageability
 - Each module is treated as black box, fully verified and validated
 - Interfaces designed within modules ensuring correct-byassembly design
 - Top-level integration only focuses on connectivity and high level system design



MPSoC Needs – the "Building-block" Methodology

- "Building-block" requirements
 - Compatibility
 - Blocks should be designed to optimize die process performance
 - Incompatible modules should be placed on different dies, MCM or 3D-stack
 - Interoperability
 - Common interface for all modules
 - Common protocol for module communication
 - Implies overhead but simplifies communication
 - Self-sufficiency
 - Blocks should not depend on other blocks to operate
 - Implies own global circuits (power, clocks, test...)

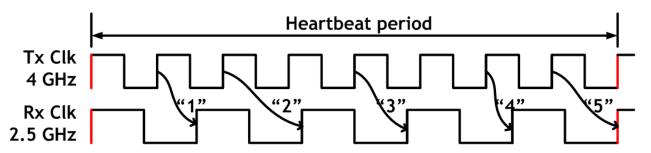
- Monolithic Microprocessor Clock System Designs
- MPSoC Needs the "Building-block" Methodology
- Future MPSoC Clock System Designs
- Summary

- "Building-block" requirements
 - Modularity
 - Clock modularity calls for self-contained module-level clock domains
 - Full-die clock distributions undermine modularity
 - Clock generation integrated into modules
 - Common protocol must be clock aware (GSLS, GALS)
 - Interchangeability
 - Application specific blocks can have different clock requirements
 - Manageability
 - As black box, clock system must be fully operational at the module level (reference input clock pins, specific power supply for clock generation, frequency control...)

- "Building-block" requirements
 - Compatibility
 - Incompatible modules should be placed on different dies
 - 3D global clock distributions?
 - Interoperability
 - Common interface & protocol for module communication
 - Common clock domain crossing design within each module
 - Self-sufficiency
 - Blocks should not depend on other blocks to operate
 - Clock generation and clock domain crossing logic included in module
 - Modules should be optimized for power and frequency depending on workload within the whole die

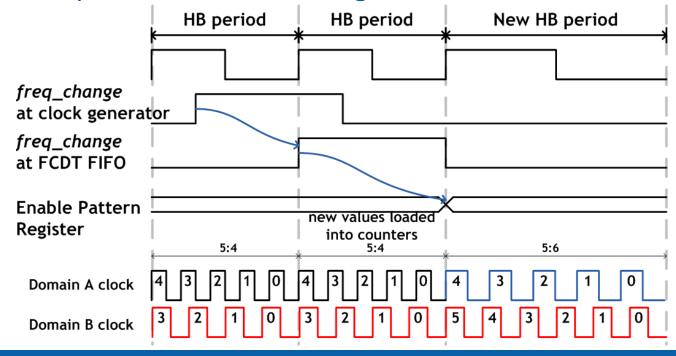
- Module optimization
 - DVFS (digital voltage & frequency scaling)
 - Technology trend for reduced operating range Vmin and Vmax converge
 - Vmax decreases due to process technology scaling
 - Vmin increases due to reliability issues: dI/dt management is critical to achieve Vmin functionality
 - Voltage changes are slow
 - PLL-based clock generation lock times minor
 - Placing voltage regulators on-die would improve slew rate
 - DVFS → DFS
 - Need for high-frequency digital frequency generation as number of modules on chip increases
 - Clock chopping, frequency shifts reduce dI/dt impacts

- Common protocol for module communication
 - Microprocessors call for determinism
 - Post-Si test/debug
 - Lockstep operation
 - Performance impact due to increased domain crossing latency
 - Communication scheme required achieving minimal latency
 - Under a common reference clock, fractional clock data transfer (FCDT1) provides an elegant deterministic solution
 - Support for fine-grain DFS
 - Non-integral ratio clock frequencies
 - Not necessarily multiples of each other (5:4, 11:7)



Copyright © Intel Corporation, 2007. All rights reserved. Third-party marks and brands are the property of their respective owners. All products, dates, and figures are subject to change without notice.

MPSoC'07 - Clock System Design Risks and Opportunities under the MPSoC Paradigm


FCDT¹ Overview

- Consistently lower latencies than synchronizer-based approach
- Fully deterministic scheme
- Rational clock domain frequency only
- Deterministic D(V)FS scheme support
- Minimal logic overhead
- Good scaling properties with FIFO size
- Transmit and receive at pre-determined Tx and Rx clock edges
- Enabled edges determined a priori by edge-choice algorithm

- FCDT¹ & D(V)FS
 - Change frequency dynamically to optimize performance
 - Fine grain frequency changes (non-integral frequency ratios)
 - Non-stop data transfer during deterministic DFS events

of their respective owners. All products, dates, and figures are subject to change without notice.

- Monolithic Microprocessor Clock System Designs
- MPSoC Needs the "Building-block" Methodology
- Future MPSoC Clock System Designs
- Summary

Summary

- "Building-block" approach is modifying the way clock systems are designed
- End of large single monolithic clock domains
- Future clock systems are made of:
 - Module-specific clock distributions
 - Well-defined low-latency deterministic clock domain crossing boundaries with common protocol between modules
 - Full D(V)FS support

