Extending the Cortex ARMv7 architecture for next generation multicore

John Goodacre, Program Manager, Multiprocessing, ARM Ltd

Summary of ARM Multicore Technology

- First announced in May 2004 with the release of the **ARM11 MPCore** multicore processor
 - Applied ARM MPCore technology to an updated ARM11 processor
- MPCore enabled processors licensed to over 10 partners
 - Broad section of applications, including networking, consumer, wireless and traditional embedded devices

- ARM11 MPCore uses the ARMv6 architecture
 - Offering ARM application compatibility
 - A pre-integrated multicore processor offering scalable performance and advanced power management techniques for reduced power consumption

MPCore: Optimized MESI Snooping

Increased power efficiency and increased scalability by avoiding system accesses:

- Duplicated Tag RAMs acting as a local Directory
 - Stored in Snoop Control Unit of the multicore processor
 - Checks if data is in cache without interrupting CPU
 - Filters access to only CPU that are sharing data Keeps power lower since directory is local
 - Allows independent tasks to run at full single thread performance resulting in linear scalability
- Direct Data Intervention (cache-2-cache transfer)
 - Copy clean data from one CPUs cache to another
 - Removing need for main memory accesses reducing associated power
- Migratory Lines
 - Move dirty data between CPUs and skips shared state.
 - Avoids power and latency associated with write back
- Read/Write cache allocation
 - With adaptive back-off for temporally inappropriate write allocation such as during a memset()

ARM MPCore Snoop Control Unit

- Clocked at CPU frequency for lower latency lookups and filtered access to CPU
- Keeps data within processor permitting lower power consumption than if time-sliced on a uniprocessor
- Power aware allowing per CPU logic and cache shutdown for advance power management.

ARMv7MP Adds h/w processor coherence

■Memory Management Unit maintenance

- Processes may span multiple processors
- Virtual memory map must be maintained so as to provide a common and consistent view of memory for each thread of a process on each CPU
- Today's solution broadcasts an interrupt to all CPU requesting update and blocking until all processors respond
- ARMv7MP multicore processors contain hardware to ensure coherence of MMU

■Cache maintenance

- For non-coherent devices, it is necessary to 'flush' the appropriate cache regions prior to the device access the associated memory
- Today's solution also use a broadcast interrupt based notification
- ARMv7MP provides hardware to synchronize cache operation

- (a) P0 executes local request (b) Sends interrupt to P1 (c) P1 executes local request (d) P1 notified update completed
- (e)P0 waits until semaphore clear

ARMv7MP Processor Coherence

- (a) P0 executes local request
- h/w echoes request to P1 Without s/w, P1 executes request
- (d) Cache coherence maintains table

Cost of today's s/w processor coherence

Measuring effect on a ARM quad-core during Linux 2.6.19 OS boot to X11 shell

~ 50,000 occurrences of software controlled processor coherence Each CPU interruption cost each other CPU measured around 2000 cycles of normal software execution

Cost of software based processor coherence: (50,000 occurrences) x (3 other CPUs) x (2000 cycles lost) =

300,000,000 wasted CPU cycles

ARMv7MP Processor coherence expected to notably reduce the time of Linux SMP boot in addition to removing the need for complex inter-processor synchronization software

5

ARM TrustZone® and GIC Architectures

- Previously extended the ARM architecture to include additional privilege levels for the execution of an additional OS within the secured software domain
- Along with ARMv7MP the architecture has been further extended to manage and secure processor interrupts between the normal and secured software domains
 - Known as the ARM Generic Interrupt Controller ("GIC") Architecture
- Together, a TrustZone and GIC architecture enabled ARMv7MP processor can:
 - Restrict and control interrupts between the two software domains
 - Partition and control access to system resource between the normal/secure domains
 - Host 'management' software within the secured domain without altering the normal OS

ARMv7MP: Improved Paravirtualization

- Today's Paravirtualization solutions
 - Provide the ability to run multiple independent OS/RTOS on a single processor
 - Requires a notable modification of a OS port to appropriately defer all privileged operations to a virtual machine manager (VMM) managing processor resource sharing
- ARMv7MP processors
 - Enable concurrent execution of multiple paravirtualized operating systems
 - Providing improved real-time response and dynamic load balancing
- ARM TrustZone Architecture
 - Allows the open OS to maintain their User and Privilege states and run the VMM in the privilege contexts of the secured software domain
 - Provides an AMBA architecture mechanism to signal TrustZone context accesses to peripherals and any system based memory protection units
 - Cache state is maintained and secured between the open and TrustZone OS context during virtualization traps and request forwarding
- ARM GIC Architecture
 - Allows the VMM to manage and arbitrate access to drivers for each open OS
- Together providing an accelerated and simplified paravirtualization solution

8

Conclusions

The ARMv7 MP extensions set to further enhance ARM multicore processors

- Hardware support for Processor Coherence
- Extending L1 cache coherence to system accelerators
- Enhanced support for OS paravirtualization

Increasing performance

Reducing power

.