
1
ARM

1

Extending the
Cortex ARMv7 architecture

for next generation
multicore

John Goodacre,

Program Manager, Multiprocessing,

ARM Ltd

2

Summary of ARM Multicore Technology

� First announced in May 2004 with the release of the
ARM11 MPCore multicore processor

� Applied ARM MPCore technology
to an updated ARM11 processor

� MPCore enabled processors
licensed to over 10 partners

� Broad section of applications, including
networking, consumer, wireless
and traditional embedded devices

� ARM11 MPCore uses the ARMv6 architecture

� Offering ARM application compatibility

� A pre-integrated multicore processor offering scalable performance
and advanced power management techniques for reduced power
consumption

11-1-1

User
Rectangle

2
ARM

3

MPCore: Optimized MESI Snooping
Increased power efficiency and increased

scalability by avoiding system accesses:

� Duplicated Tag RAMs acting as a local Directory
� Stored in Snoop Control Unit of the multicore processor

� Checks if data is in cache without interrupting CPU

� Filters access to only CPU that are sharing data

� Keeps power lower since directory is local

� Allows independent tasks to run at full single thread
performance resulting in linear scalability

� Direct Data Intervention (cache-2-cache transfer)
� Copy clean data from one CPUs cache to another

� Removing need for main memory accesses reducing
associated power

� Migratory Lines
� Move dirty data between CPUs and skips shared state.

� Avoids power and latency associated with write back

� Read/Write cache allocation
� With adaptive back-off for temporally inappropriate write

allocation such as during a memset()

ARM MPCore Snoop Control Unit

� Clocked at CPU frequency for
lower latency lookups and filtered
access to CPU

� Keeps data within processor
permitting lower power
consumption than if time-sliced on
a uniprocessor

� Power aware allowing per
CPU logic and cache shutdown
for advance power management.

4

ARMv7MP Adds h/w processor coherence

�Memory Management Unit maintenance

� Processes may span multiple processors

� Virtual memory map must be maintained so as
to provide a common and consistent view of
memory for each thread of a process on each
CPU

� Today’s solution broadcasts an interrupt to all
CPU requesting update and blocking until all
processors respond

� ARMv7MP multicore processors contain
hardware to ensure coherence of MMU

�Cache maintenance

� For non-coherent devices, it is necessary to
‘flush’ the appropriate cache regions prior to the
device access the associated memory

� Today’s solution also use a broadcast interrupt
based notification

� ARMv7MP provides hardware to synchronize
cache operation

MMU

CPU P0

cache

page
table

MMU

CPU P1

cache

page
tableSEM

(a)

(b)

(c) (d)(e)

(a)
(b)
(c)
(d)
(e)

P0 executes local request
Sends interrupt to P1
P1 executes local request
P1 notified update completed
P0 waits until semaphore clear

Today’s s/w processor coherence

MMU

CPU P0

cache

MMU

CPU P0

cache

page table

(a)

(b)

(d)

ARMv7MP Processor Coherence

(c)

(a)
(b)
(c)

P0 executes local request
h/w echoes request to P1
Without s/w, P1 executes request
Cache coherence maintains table(d)

11-1-2

User
Rectangle

3
ARM

5

Cost of today’s s/w processor coherence

Measuring effect on a ARM quad-core during
Linux 2.6.19 OS boot to X11 shell

~ 50,000 occurrences of software controlled processor coherence

Each CPU interruption cost each other CPU
measured around 2000 cycles of normal software execution

Cost of software based processor coherence:

(50,000 occurrences) x (3 other CPUs) x (2000 cycles lost) =

300,000,000 wasted CPU cycles

ARMv7MP Processor coherence expected to notably reduce
the time of Linux SMP boot in addition to removing the need for

complex inter-processor synchronization software

666

Supporting Accelerator Coherence

CPU

D$ I$

SCU

Coherent System

DMA CryptoL2 Cache

shared, with per-master lockdown to
limit high-bandwidth master flooding

CPU

D$ I$

Local Coherence Bus (no snooping on bus)

Example: Write

Writes clean and
invalidates L1
if necessary

Optionally allocating
into the shared L2

cache

Final write back

Example: Read

May hit and resolve
in CPU’s L1 cache

Else hit in shared
L2 cache

Else resolved from
main memory

…

Sharing benefits of the ARM SCU optimized coherency implementation

Accelerators gain access to CPU cache hierarchy, lowering system
power and increasing overall performance

“Event pulse” enabling next cycle notifications

11-1-3

User
Rectangle

4
ARM

7

ARM TrustZone® and GIC Architectures
� Previously extended the ARM architecture to include additional privilege levels for

the execution of an additional OS within the secured software domain

� Along with ARMv7MP the architecture has been further extended to manage and
secure processor interrupts between the normal and secured software domains
� Known as the ARM Generic Interrupt Controller (“GIC”) Architecture

� Together, a TrustZone and GIC architecture enabled ARMv7MP processor can:
� Restrict and control interrupts between the two software domains

� Partition and control access to system resource between the normal/secure domains

� Host ‘management’ software within the secured domain without altering the normal OS

Normal
domain

Secure
domain

TrustZone adds a “second OS context”

to allow trusted programs and data

to be safely separated from the open

operating system and applications

GIC normal/secure routingInterrupts
GIC provides an architected way to

isolate and control which software

domain receives which interrupts

8

ARMv7MP: Improved Paravirtualization

� Today’s Paravirtualization solutions
� Provide the ability to run multiple independent OS/RTOS on a single processor

� Requires a notable modification of a OS port to appropriately defer all privileged
operations to a virtual machine manager (VMM) managing processor resource sharing

� ARMv7MP processors
� Enable concurrent execution of multiple paravirtualized operating systems

� Providing improved real-time response and dynamic load balancing

� ARM TrustZone Architecture
� Allows the open OS to maintain their User and Privilege states and run the VMM in the

privilege contexts of the secured software domain

� Provides an AMBA architecture mechanism to signal TrustZone context accesses to
peripherals and any system based memory protection units

� Cache state is maintained and secured between the open and TrustZone OS context
during virtualization traps and request forwarding

� ARM GIC Architecture
� Allows the VMM to manage and arbitrate access to drivers for each open OS

� Together providing an accelerated and simplified paravirtualization solution

11-1-4

User
Rectangle

5
ARM

9

Conclusions

The ARMv7 MP extensions set to
further enhance ARM multicore processors

�Hardware support for Processor Coherence

� Extending L1 cache coherence to system accelerators

� Enhanced support for OS paravirtualization

Increasing performance

Reducing power

11-1-5

User
Rectangle

11-1-6

