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Summary of ARM Multicore Technology

� First announced in May 2004 with the release of the 
ARM11 MPCore multicore processor

� Applied ARM MPCore technology
to an updated ARM11 processor

� MPCore enabled processors 
licensed to over 10 partners

� Broad section of applications, including
networking, consumer, wireless 
and traditional embedded devices

� ARM11 MPCore uses the ARMv6 architecture

� Offering ARM application compatibility

� A pre-integrated multicore processor offering scalable performance 
and advanced power management techniques for reduced power 
consumption
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MPCore: Optimized MESI Snooping
Increased power efficiency and increased 

scalability by avoiding system accesses:

� Duplicated Tag RAMs acting as a local Directory
� Stored in Snoop Control Unit of the multicore processor

� Checks if data is in cache without interrupting CPU

� Filters access to only CPU that are sharing data

� Keeps power lower since directory is local

� Allows independent tasks to run at full single thread 
performance resulting in linear scalability

� Direct Data Intervention  (cache-2-cache transfer)
� Copy clean data from one CPUs cache to another

� Removing need for main memory accesses reducing 
associated power

� Migratory Lines
� Move dirty data between CPUs and skips shared state.

� Avoids power and latency associated with write back

� Read/Write cache allocation
� With adaptive back-off for temporally inappropriate write 

allocation such as during a memset()

ARM MPCore Snoop Control Unit

� Clocked at CPU frequency for 
lower latency lookups and filtered
access to CPU

� Keeps data within processor
permitting lower power
consumption than if time-sliced on
a uniprocessor

� Power aware allowing per 
CPU logic and cache shutdown
for advance power management. 
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ARMv7MP Adds h/w processor coherence

�Memory Management Unit maintenance

� Processes may span multiple processors

� Virtual memory map must be maintained so as 
to provide a common and consistent view of 
memory for each thread of a process on each 
CPU

� Today’s solution broadcasts an interrupt to all 
CPU requesting update and blocking until all 
processors respond

� ARMv7MP multicore processors contain 
hardware to ensure coherence of MMU

�Cache maintenance

� For non-coherent devices, it is necessary to 
‘flush’ the appropriate cache regions prior to the 
device access the associated memory

� Today’s solution also use a broadcast interrupt 
based notification

� ARMv7MP provides hardware to synchronize 
cache operation
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P0 executes local request
Sends interrupt to P1
P1 executes local request
P1 notified update completed 
P0 waits until semaphore clear

Today’s s/w processor coherence
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ARMv7MP Processor Coherence
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P0 executes local request
h/w echoes request to P1
Without s/w, P1 executes request
Cache coherence maintains table(d)
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Cost of today’s s/w processor coherence

Measuring effect on a ARM quad-core during 
Linux 2.6.19 OS boot to X11 shell

~ 50,000 occurrences of software controlled processor coherence

Each CPU interruption cost each other CPU 
measured around 2000 cycles of normal software execution

Cost of software based processor coherence:  

(50,000 occurrences) x (3 other CPUs) x (2000 cycles lost) =

300,000,000 wasted CPU cycles

ARMv7MP Processor coherence expected to notably reduce 
the time of Linux SMP boot in addition to removing the need for 

complex inter-processor synchronization software
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Supporting Accelerator Coherence

CPU

D$ I$

SCU   

Coherent System

DMA CryptoL2 Cache

shared, with per-master lockdown to
limit high-bandwidth master flooding

CPU

D$ I$

Local Coherence Bus (no snooping on bus)

Example: Write

Writes clean and 
invalidates L1 
if necessary

Optionally allocating 
into the shared L2 

cache

Final write back

Example: Read

May hit and resolve 
in CPU’s L1 cache

Else hit in shared 
L2 cache

Else resolved from 
main memory

…

Sharing benefits of the ARM SCU optimized coherency implementation 

Accelerators gain access to CPU cache hierarchy, lowering system
power and increasing overall performance

“Event pulse” enabling next cycle notifications
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ARM TrustZone® and GIC Architectures
� Previously extended the ARM architecture to include additional privilege levels for 

the execution of an additional OS within the secured software domain

� Along with ARMv7MP the architecture has been further extended to manage and 
secure processor interrupts between the normal and secured software domains
� Known as the ARM Generic Interrupt Controller (“GIC”) Architecture

� Together, a TrustZone and GIC architecture enabled ARMv7MP processor can:
� Restrict and control interrupts between the two software domains

� Partition and control access to system resource between the normal/secure domains

� Host ‘management’ software within the secured domain without altering the normal OS

Normal 
domain

Secure 
domain

TrustZone adds a “second OS context” 

to allow trusted programs and data 

to be safely separated from the open

operating system and applications

GIC normal/secure routingInterrupts
GIC provides an architected way to

isolate and control which software

domain receives which interrupts
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ARMv7MP: Improved Paravirtualization

� Today’s Paravirtualization solutions
� Provide the ability to run multiple independent OS/RTOS on a single processor

� Requires a notable modification of a OS port to appropriately defer all privileged 
operations to a virtual machine manager (VMM) managing processor resource sharing

� ARMv7MP processors
� Enable concurrent execution of multiple paravirtualized operating systems

� Providing improved real-time response and dynamic load balancing

� ARM TrustZone Architecture
� Allows the open OS to maintain their User and Privilege states and run the VMM in the 

privilege contexts of the secured software domain

� Provides an AMBA architecture mechanism to signal TrustZone context accesses to 
peripherals and any system based memory protection units

� Cache state is maintained and secured between the open and TrustZone OS context 
during virtualization traps and request forwarding 

� ARM GIC Architecture
� Allows the VMM to manage and arbitrate access to drivers for each open OS

� Together providing an accelerated and simplified paravirtualization solution
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Conclusions

The ARMv7 MP extensions set to 
further enhance ARM multicore processors

�Hardware support for Processor Coherence 

� Extending L1 cache coherence to system accelerators

� Enhanced support for OS paravirtualization

Increasing performance

Reducing power
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