Ultra-Low Power? Think Multi-ASIP SoC!

Gert Goossens CEO Target Compiler Technologies

gert.goossens@retarget.com

Ultra-low power SoC design

ITRS Roadmap

Table 6b Power Supply and Power Dissipation—Long-term Years

Year of Production	2010	2012	2013	2015	2016	2018
Technology Node	hp45		hp32		hp22	
DRAM ½ Pitch (nm)	45	35	32	25	22	18
MPU/ASIC Metal 1 (M1) ½ Pitch (nm)	54	42	38	30	27	21
MPU/ASIC ½ Pitch (nm) (Un-contacted Poly)	45	35	32	25	22	18
MPU Printed Gate Length (nm) ††	25	20	18	14	13	10
MPU Physical Gate Length (nm)	18	14	13	10	9	7
Power Supply Voltage (V)		•	•	•		
Vdd (high-performance)	1.0	0.9	0.9	0.8	0.8	0.7
Vdd (Low Operating Power, high Vdd transistors)	0.7	0.7	0.6	0.6	0.5	0.5
Allowable Maximum Power [1]		•	•	•		
High-performance with heatsink (W)	218	240	251	270	288	300
Cost-performance (W)	120	131	138	148	158	168
Battery (W)—(hand-held)	2.8	3.0	3.0	3.0	3.0	3.0

ITRS Roadmap 2003]

■ Power budget (Watts) more or less constant, while chip complexity increases

^[1] Power will be limited more by system level cooling and test constraints than packaging

Ultra-low power SoC design

["Moore's Law Meets Static Power", Computer, December 2003, IEEE Computer Society]

Dynamic power

$$P_{dyn} = C \times (A \times f_{clock}) \times V_{dd}^{2}$$

- Low-voltage technology, voltage scaling
- Concurrency: task-, data-, instruction-level parallelism
- Avoid unnecessary switching: clock gating, operand isolation...

Leakage power

$$P_{leak}$$
 = I_{leak} \times V_{dd}
 \sim $(a^{-Vt}$ \times N_{gates} \times $W_{dev})$ \times V_{dd}

- Multi-threshold cell libraries
- Power gating
- Minimal logic (application-specific)

Ultra-low power SoC design

► Holistic approach

■ Ho·lis·tic adj

" Emphasising the importance of the whole and the interdependence of its parts "

- Design phases considered
 - System architecture
 - Processor (ASIP) architecture
 - Logic level

System architecture

System-on-Chip becomes Sea-of-Cores

2000
2G baseband chip

Custom logic

ARM7 TI C540

Low-level Custom logic Voice codec

2005 ~ 2010 ≥ 3G baseband & radio chip Multi-standard, SDR

- Homogeneous, multi generalpurpose processors
 - VLIW/SIMD: NXP (EVP), Sandbridge, Atmel (Diopsis)...
 - Array processor: Morpho, IMEC...
 - Processor arrays: PicoChip, Cradle...

- ► Heterogeneous, multi-ASIP
 - Configurable IP vendors: Tensilica, ARC, SiliconHive...
 - EDA vendors: Target, CoWare, ASIP Solutions...

- ► Heterogeneous best for deep submicron power challenge!
 - Each ASIP optimised for its function: minimal logic, balanced parallelism
 - Well suited for power gating based on system requirements

System architecture

Example: Gennum's Voyageur platform

- Used in hearing instruments and Bluetooth headsets
- Processor cores designed with Target's tool suite

- Multi-core
 - Microprocessor core
 - 4 "μ DSP" VLIW cores
 - 4 filter accelerators
- 0.04 mW/M-MAC,
 42 MIPS at f_{clock} = 2 MHz (0.13μ CMOS)

Courtesy of Gennum Corporation

ASIP architecture

Concurrency

- Instr.-level parallelism (VLIW or encoded)
- Data-level parallelism (SIMD)

► Reduced memory access

- Memory hierarchy: data & instr. caches, loop buffer
- Distributed reg. architecture
- Encoded instruction set

Arch. specialisation

- App.-specific data types
- App.-specific functional units and instructions
- Balanced pipeline

→ Optimise beyond the limitations of configurable processor templates!

ASIP architecture

True architectural exploration enabled by retargetable tool suite – "Chess/Checkers"

- Optimisation beyond reconfigurable processor templates
- Fast path to logic synthesis allows for accurate power estimations

ASIP architecture

Example: Gennum's Voyageur platform

- 0.04 mW/M-MAC,
 42 MIPS at f_{clock} = 2 MHz (0.13μ CMOS)
- μ DSP and filter engines:
 20-bit precision
- μ DSP: VLIW with dual MAC
- Filter accelerators:
 same algorithm consumes 4x less
 power than on μ DSP

Logic level

► HDL generator adds logic to avoid unnecessary switching

- Selective clock gating
- Selective operand isolation
- Latching of register file addresses in instruction decoder

Example: audio DSP (90 nm technology, 200 MHz)

Design step	Power	Area	
Go - Without low power options	91 µW/MHz		
Go - Clock gating and operand isolation for FUs	57 μW/MHz (-37%)		
Go - Operand isolation for muxes	44 μW/MHz (-23%)		
Go - Register addresses from decoder	36 μW/MHz (-18%)	36.9 kGates	
Manual HDL design by low-power specialist	32 µW/MHz (-11%)	36.6 kGates (-1%)	

Conclusions

- ► Heterogeneous multi-ASIP SoCs best meet deep-submicron power challenge
 - Optimally balanced task / data / instruction-level parallelism → reduce dynamic power
 - Minimal logic, power gating → reduce leakage power
- **Key is retargetable tool suite for efficient ASIP design**
 - Enables true architectural exploration, beyond configurable processor templates
 - Provides unified and efficient software development environment
- ► Fast and efficient path to logic implementation
 - Includes logic-level power optimisations
 - Enables fast and accurate power estimations

