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UMIC Research Cluster at RTWH Aachen

= Ultra high-speed Mobile Information and Communication
= extremely challenging application demands
" |imitations of mobile communications and
® technology capabilities and constraints

" The design requires a tremendous leap

= needs collaborative research in
Ultra High-Speed Mobile
Information and Communication

" Mobile Applications & Services
" Wireless Transport Platform

® Radio Frequency Subsystems
& System-on-Chip (SoC) Design
® Cross Disciplinary Methods & Tools
= Total funding 36mio€ (2006-2011)

. WWW.umIC.rWth'aaChen-de Cross DIEGIP'JI’IEW Research

& Services
Wireless Transport
Platform
RF Subsystem
& SoC Design
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=  rASIP Application Space
" Future Wireless Communication Systems
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Future Wireless Systems : Cognitive Radios

" Must sense or be cognitive of the environment
® QOther user interference, multipath, noise, etc.
" Time-variations

= Must be intelligent to analyze the situation and fi nd the
optimal communications protocol, frequency, channel , etc.

= Must reconfigure for the channel and protocol requi red
= And...constantly adapt to mobile changing environment S

= Will have multiple antennas (MIMO)

" They will make use of ultra-complex and  ultra energy
efficient signal processing to optimally use the available
bandwidth

These radios “find the best protocol, frequency,

and channel” to communicate over
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= UMIC Many Core Working Assumptions
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The ,Key Algorithm* Proposition of the UMIC Platform

Each signal processing is based on a small number
of fundamental algorithms ( ,Nuclei“) that represent
a significant amount of the computation.

= Focus on an efficient composition (,design of
an MPSoc) or mapping (,programming of the
MPSoC*)

References:
= UC Berkeley, EECS TR, June 15, 2006
® [enne, Leupers: Customizable Embedded Processors, August 2006
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HW/SW Partitioning: Spatial and Temporal Mapping

MULTI WAVEFORM
CENTRIC ENGINE

Function Centric DSS Engine Single Carrier Engine Multi Carrier Engine
Common Designs (CDMA, GPS) (TDMA) OFDM
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1. System Architecture Concept (HW & SW)

B Remember: demodulation is running continuousl|

Hidden Latency Requirements (not MIPS) dominate
B Data —) L1 Config/Ctrl Arclillesisiee Information/Higher Layer Ctrl



Intel RMS View (Recognition, Mining,Synthesis)
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= rASIP Design Space
= Early rASIP Designs
= Traditional Design Methodology
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rASIP Design Space

Design decisions:
core =

registers base architecture

= reconfigurable part

= where to put

= granularity etc.
= coupling and interface

= HUGE design space!
= Clear design methodology
required.
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Traditional Design Methodology

Application(s)

v logic granularity

RISC Partitioning
VLIW

routing

connectivity

Pipeline ISA l 1

Processor F_PGA _
Selection / Design Selection / Design

‘ o ‘
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<

® Dedicated/ Partially Re-targetable Tools

architecture
style

® Separate Design Space Exploration
= Partial Design Space Exploration
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=  Proposed rASIP Design Flow
= Pre-Fabrication Design Flow
= Post-Fabrication Design Flow
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PRE-Fabrication Phase

Design app _
Space l
Exploration —
Analysis
High Level rASIP Description modified app
(LISA 3.0)
= [nterface information HDL Code SW Tool Suite
= Application speed-up - .
- Re-configurable block ' Generation Generation
area-timing N REEREEE!  EEEEEEESEEEEEEE e,
= Base processor
area-timing-power HDL model
= Available coding space .
for custom instructions base | inter- reconf.
)7 proc. | face ext.
development
verification
exploration
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POST-Fabrication Phase

Design ap- Same basic tool flow
Space l for pre- and post-fabrication
Exploration —
Analysis

High Level rASIP Description ‘ modified app

base proc. insn set ext.

» |nterface information

= Application speed-up

= Re-configurable block
area-timing

= Base processor
area-timing-power HDL model

= Available coding space .
for custom instructions base LICIER reconf.
7 proc. § face ext.

adaptation

fixed in
post-fabrication
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Stepwise Processor Modelling

stage 1

program
memory

stage 2

stage 3

data memory

stage 4

stage 5

step 1 : capturing the ISA step 2 : structuring the ISA
A""

local
memory

coarse-grained
FPGA
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= Proof of Concept
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GOST vs Blowfish Hotspot

GOST Hotspot Blowfish Hotspot

unsigned long F(unsigned long x)

word32 f(word32 x)

{ _ :
x = k87[x>>24 & 255] << 24 S ;>X_8§9XOOFF'
| kK65[x>>16 & 255] << 16 — « & OXOOFF:
| K43[x>> 8 & 255] << 8 o g
| k21[x & 255]; b = x & OXOOFF:
I/l Rotate left 11 bits X o>z 8- '
return x<<11 | x>>(32-11); e
} a = x & OXO0FF;
y = S[0][a] + S[1][b];
y =y " S[2]c];
y =y + S[3][d];
returny;
1

The similarity exists only in atomic level.
Not enough to boost performance
= Separate Custom Instructions are needed
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(1SS o+ vey 21 UNIVERSITY



Application Analysis

= |nitial results
" Not good for GOST, better for Blowfish
" | onger operation chains are key to speed-up

= |dentifying common characteristics

" Given cryptographic applications access constant S-Boxes
from the hot-spots

® Such S-Boxes can be put inside scratch-pads accessible
from custom instructions

® Conclusion: Scratch-pad access from custom instructions
might result in higher speed-ups
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Design Space Exploration Results

» GOST: 105 data points

» Blowfish: 120 data points

= Custom Instruction Synthesis with various latencies, area constraints
= From 0 to 4 scratch-pad access per custom instruction

= Total exploration time: 2 man days

O GOST
B Blowfish

Speed-up
(Times)

SO S1 S2 S3 S4

Custom instructions Set synthesis tool: R.Leupers,K.Karuri, RWTH
A~ Aachen)
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Overview: Architecture and Parameters

Cluster

horizontal LEs per row Cy=[1..64]
vertical LEs per column Cy=[1..64]
global inputs north Ix=[0..4]
global inputs west Iw=[0..4]
global inputs south 1s=[0..4]
global inputs east [=[0..4]

output directions

D¢ =any set from [north,west,south,east]
output ports (LE-ports)

o granularity Mc=[1..C]

(only adjacent LEs in a row)

same for all clusters

eneral

o horizontal clusters in eFPGA Sy=[1..256]
o vertical clusters in eFPGA S\=[1..256]

Y y

Routing Switch

o horizontal tracks W=[1..256]
o vertical tracks W\=[1..256]
¢ switch-positions as index of crossing
vert. and hor. lines Prs=[iv,in]
(only Fs=3, no cascaded SPs)
¢ SP-definition SPi=set of routes
e per track i: segment length Li=[1..256]
o granularity Mgs=[1..64]
(only adjacent switch points)

same for all RS

E@j_ mm L
s SETEE

[t
[t
-
|- -
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[t
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Logic Element

Dedicated Routing Block (DRB)
¢ inputs from other LEs and broadcast
defined per input of Core Logic [list]

Core Logic (CL) only for configurator
¢ set of functions with according CL-in-/
outputs (from DRB and dedicated) [list]

same for all LEs
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Register-Stage only for configurator

LEs in a column per register Nreg=[1..Cv]
register-chain RC=[yes,no]

LE-outputs with register [list]

broadcast lines with register [list]

same for all register stages

Connection Box

o switch positions per cluster in-/output:
set of tracks described by track index
itrack,» LE-index i g (row or column) and
ranges of tracks riack
PCP,i=f(itrackvrtrackviLE)

¢ granularity Mcg=[1..64]

(only adjacent connection points)

same for all CBs and defined only once
per cluster-row (-column)

Source: T.G. Noll, RWTH Aachen
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Parameterisable FPGA Architecture — Template

. . Routing
Connection Box _
Switch
[ 1 I 1 "" ""
> -
) two-dimensional conn
LE-Cluste i Box
Y ey Y vy

Source: T.G. Noll, RWTH Aachen
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Parameterisable FPGA Architecture — Template

Tl

0uting Switch

S~
D
-
~—t
g

Ce fhAar
Co (HIOlZ,

tlines

L
Broadcast lines

ed SRA

(@a)

Switch-positions

tch Point

SNc
11O directions
11T'\JV' AL Il

onnectivity per Sw

Segment lengths
# shared SRAMs

Logic element

e’

Functionality (Core logic

Connectivity (DRB)

onhnection Box

-

# Lines per group

Q.

indow width

<f

4%

Reqgister stag¢

—

ase position of window

# LEs (Column) per Reg.

Nindow periodicity

# LE-outputs with Reg.
Type (Register, Latch, ...)

# shared SRAMs

Source: T.G. Noll, RWTH Aachen
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GNSS Prototype Hardware

= Multioperable GNSS frontend
" Supports: NavStar GPS, Glonass, Galileo, Egnos,
" 1575 - 1620 MHz

= Flexible FPGA based receiver

st

Source T.G. Noll, RWTH Aachen
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Arithmetic oriented eFPGA vs. commercial FPGA

1E+02 ..............
. ..GP-processor O 8x8 Multiplication
1E+01 e A 4-Bit MAC-element
DSP pltera O 4-Bit Butterfly-element
....... -Bit Butterfly-elemen
1E+00 Cyclone
EECS <> 4-tap 1D-FIR-Filter
n eFPGA
o )
O 1E-01
= standard
— cells
<0+ 00000 QO D000
-
1E-03
EH4
phys. opt
1E-05 T T T T T
1E+00 1E+01 1E+02 1E+03 1E+04 1E+05 1E+06
MOPS / mm?2
Source: T.G. Noll, RWTH Aachen
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Reconfigurable Processor vs. Standard Processor
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Source: T.G. Noll, RWTH Aachen
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= Qutlook
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= rASIPs allow combining the benefits of both ASIP and
FPGA

" |n view of future wireless applications, this is desired

" Embedded domain-specific eFPGA macros are key for high
areal/energy efficiency

= Pre-fabrication design-space exploration is absolutel y
essential

= Post-fabrication tools for programmability and
reconfigurability are absolutely essential

® | anguage-driven (LISA 3.0) rASIP tool suite is propos ed
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= Processor Design flow with Embedded FPGAs
" Current research

" Generic Modelling, Exploration and Implementation of
embedded FPGASs

" |ntegration of rASIPs into complete SoC design flow
(virtual prototyping)

= Applying the Methodology

® Cognitive radio, an upcoming research challenge for system
designers, will be handled with the proposed tools and
methodology

A= RWTHAACHEN
InISS o vey 32 UNIVERSITY




Thank You

A= RWTHAACHEN
InISS o vey 33 UNIVERSITY




Intel RMS View (Recognition, Mining,Synthesis)
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Basic geometry primitives
(partitioning stroctures, primitive tests)




384 kbps UMTS Receiver BB Complexit

384 kbps UMTS recelver dlgltal BB compIeX|ty
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SW Programming Model

Control Processor

/ Software (Written in C) l
1 1
1 1
: 1
VMI Programming Interface
Rake Searcher
Resources Resources
. Preamble .
S|g nal Processing 'gansmltter
. Resources esources
PrOCeSSIng IIIIIIII'OT Illllllllllllllllhl EEEEEEEEEEEEEEEERESR I@IIIIII HardWareAbStraCthn Layer
o
System 2 = T‘;",
= S
23 : :
S Wireless Signal Processor
" Rake Processing Unit
5 & 5
GNJ i) Searcher Processing Unit T
= o0& ; —— &= <
D o Preamble Detection Processing Unit 8
o '8 m
\ nd Transmit Processing Unit
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On Flexibility

'. (Performance X Application Range) = Constant ?

= Better energy-performance
= Better runtime for control-dominated code
= Easy to program

= Better runtime for data-dominated code

Coarse-grained . e . .
g S = Ability to exploit fine-grained parallelism

FPGA

Digital Signal
Processors

Performance

General Purpose
Processors, General Purpose FPGA

A

Evolving / Changing Applications
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