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UMIC Research Cluster at RTWH Aachen

� Ultra high-speed Mobile Information and Communication
� extremely challenging application demands
� limitations of mobile communications and
� technology capabilities and constraints

� The design requires a tremendous leap
���� needs collaborative research in

� Mobile Applications & Services
� Wireless Transport Platform
� Radio Frequency Subsystems 

& System-on-Chip (SoC) Design
� Cross Disciplinary Methods & Tools

� Total funding 36mio€ (2006-2011)
� www.umic.rwth-aachen.de
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� Must sense or be cognitive of the environment
� Other user interference, multipath, noise, etc.

� Time-variations

� Must be intelligent to analyze the situation and fi nd the 
optimal communications protocol, frequency, channel , etc.

� Must reconfigure for the channel and protocol requi red

� And…constantly adapt to mobile changing environment s

� Will have multiple antennas (MIMO)
� They will make use of ultra-complex and ultra energy 

efficient signal processing to optimally use the available 
bandwidth

Future Wireless Systems : Cognitive  Radios

These radios “find the best protocol, frequency, 
and channel” to communicate over

These radios “find the best protocol, frequency, 
and channel” to communicate over
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The „Key Algorithm“ Proposition of the UMIC Platform

Each signal processing is based on a small number 
of fundamental algorithms ( „Nuclei“) that represent
a significant amount of the computation.

���� Focus on an efficient composition („design of       
an MPSoc) or mapping („programming of the 
MPSoC“)

References:

� UC Berkeley, EECS TR, June 15, 2006

� Ienne, Leupers: Customizable Embedded Processors, August 2006
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HW/SW Partitioning: Spatial and Temporal Mapping 
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HW/SW Partitioning: Spatial and Temporal Mapping 
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Butterfly Unit

Source: R. Subramanian
formally Morphics Inc.
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1. System Architecture Concept (HW & SW)

Tx Modulator

Inner Receiver

Tx Framing & 
FEC

Outer Receiver 

Layer 1 SW

Cell Search

Delay
Profile 

Estimation

Physical Layer Scheduling & Ctrl Layer 1 SW

Data L1 Config/Ctrl System Information/Higher Layer Ctrl

Layer 2/3 Stack (MAC, RLC, 
RRC)

AFC
AGCTiming

Tracking
Transport Channel
Reconfig

Physical Layer ReconfigUL Power Control

DL Power ControlClosed Loop Tx DiversityHSDPA HARQ ACK/NACKHSUPA HARQ ControlHSUPA E-TFC SelectionIntra-Frequency Measurements

Soft Handover

Inter-Frequency Measurements
Hard Handover

Inter-RAT Handover

Hidden Latency Requirements (not MIPS) dominate
Architecture

� Remember: demodulation is running continuously

Source: Dr.H.Dawid, Infineon
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Intel RMS View (Recognition, Mining,Synthesis)
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rASIP Design Space

Design decisions:

� base architecture

� reconfigurable part

� where to put

� granularity etc.

� coupling and interface

coreregisters

memory

bus

ctrl

� HUGE design space!
� Clear design methodology 

required.
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Partitioning

Traditional Design Methodology

Application(s)

Processor FPGA

� Dedicated/ Partially Re-targetable Tools 

Selection / Design Selection / Design

RISC

ISA
Pipeline

VLIW

logic granularity

connectivity

routing

architecture
style

� Separate Design Space Exploration
� Partial Design Space Exploration
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Unified Description 
(ASIP + FPGA)

Analysis

app

HDL Code 
Generation

SW Tool Suite 
Generation

PRE-Fabrication Phase

High Level rASIP Description
(LISA 3.0)

Design
Space

Exploration

HDL model
base
proc.

reconf.
ext.

inter-
face 

…
simulator
compiler

SW Tools

� Interface information
� Application speed-up
� Re-configurable block

area-timing
� Base processor 

area-timing-power
� Available coding space 

for custom instructions

modified app

� development

� verification

� exploration
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interface 
config.

xml

High Level rASIP Description

base proc. insn set ext.

HDL Code 
Generation

Analysis

app

SW Tool Suite 
Generation

POST-Fabrication Phase

HDL model
base
proc.

inter-
face 

base
proc.

reconf.
ext.

inter-
face 

…
simulator
compiler

SW Tools

interface 
config.

xml

� adaptation

High Level rASIP Description

base proc. insn set ext.

fixed in 
post-fabrication

Same basic tool flow
for pre- and post-fabrication

Design
Space

Exploration

• Interface information
• Application speed-up
• Re-configurable block 

area-timing

� Interface information
� Application speed-up
� Re-configurable block

area-timing
� Base processor 

area-timing-power
� Available coding space 

for custom instructions

modified app
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GOST vs Blowfish Hotspot

GOST Hotspot Blowfish Hotspot
unsigned long F(unsigned long x)
{

……
d = x & 0x00FF; 
x >>= 8; 
c = x & 0x00FF; 
x >>= 8; 
b = x & 0x00FF; 
x >>= 8; 

a = x & 0x00FF; 

y = S[0][a] + S[1][b]; 
y = y ^ S[2][c]; 
y = y + S[3][d]; 

return y;
}

word32 f(word32 x)
{

x = k87[x>>24 & 255] << 24
| k65[x>>16 & 255] << 16
| k43[x>> 8 & 255] << 8
| k21[x & 255];

// Rotate left 11 bits 
return x<<11 | x>>(32-11);

}

x const

>>

ld

const

<<

x

const

&

ld

+

>> const

&

ld

const

The similarity exists only in atomic level.
Not enough to boost performance

� Separate Custom Instructions are needed

The similarity exists only in atomic level.
Not enough to boost performance

� Separate Custom Instructions are needed
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Application Analysis

� Initial results
� Not good for GOST, better for Blowfish
� Longer operation chains are key to speed-up

� Identifying common characteristics
� Given cryptographic applications access constant S-Boxes 

from the hot-spots
� Such S-Boxes can be put inside scratch-pads accessible 

from custom instructions
� Conclusion: Scratch-pad access from custom instructions 

might result in higher speed-ups
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Design Space Exploration Results
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GOST

Blowfish

� GOST:    105 data points
� Blowfish: 120 data points
� Custom Instruction Synthesis  with various latencies, area constraints
� From 0 to 4 scratch-pad access per custom instruction
� Total exploration time: 2 man days 

Custom instructions Set synthesis tool: R.Leupers,K.Karuri, RWTH 
Aachen)
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Overview: Architecture and Parameters

Source: T.G. Noll, RWTH Aachen 
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Parameterisable FPGA Architecture – Template
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Source: T.G. Noll, RWTH Aachen 
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Parameterisable FPGA Architecture – Template

S
R
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M

S
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S
R
A
M

S
R
A
M

Cluster

# LEs (horiz. / vert.)

# Broadcast lines

# shared SRAMs
I/O directions

Logic element

Functionality (Core logic)

Connectivity (DRB)

Register stage

# LEs (Column) per Reg.
# LE-outputs with Reg.

Type (Register, Latch, ...)

Routing Switch

# lines

Switch-positions

Connectivity per Switch Point
Segment lengths

# shared SRAMs

Connection Box

# Lines per group

Window width
Phase position of window

Window periodicity

# shared SRAMs

Source: T.G. Noll, RWTH Aachen 
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GNSS Prototype Hardware

� Multioperable GNSS frontend
� Supports: NavStar GPS, Glonass, Galileo, Egnos, ...
� 1575 – 1620 MHz

� Flexible FPGA based receiver

Source: T.G. Noll, RWTH Aachen 
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Source: T.G. Noll, RWTH Aachen 
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Source: T.G. Noll, RWTH Aachen 
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Conclusion

� rASIPs allow combining the benefits of both ASIP and  
FPGA
� In view of future wireless applications, this is desired

� Embedded domain-specific eFPGA macros are key for high 
area/energy efficiency

� Pre-fabrication design-space exploration is absolutel y 
essential

� Post-fabrication tools for programmability and 
reconfigurability are absolutely essential

� Language-driven (LISA 3.0) rASIP tool suite is propos ed
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Outlook

� Processor Design flow with Embedded FPGAs
� Current research

� Generic Modelling, Exploration and Implementation of 
embedded FPGAs

� Integration of rASIPs into complete SoC design flow 
(virtual prototyping)

� Applying the Methodology
� Cognitive radio, an upcoming research challenge for system 

designers, will be handled with the proposed tools and 
methodology
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Thank You
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Intel RMS View (Recognition, Mining,Synthesis)
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384 kbps UMTS Receiver BB Complexity
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SW Programming Model

Control Processor

Software (Written in C)Software (Written in C)

Wireless Signal Processor
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General Purpose
Processors, General Purpose FPGA

Digital Signal
Processors

P
er
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Field
Programmable

Devices

Evolving / Changing Applications

Coarse-grained
FPGA

On Flexibility

(Performance X Application Range) = Constant ?

ASIP
� Better energy-performance
� Better runtime for control-dominated code
� Easy to program

� Better runtime for data-dominated code
� Ability to exploit fine-grained parallelism


