

Re-configurable ASIPs:

Is there any need for these architectures?

28.06.2007, MPSoC 2007, Japan

Heinrich Meyr

Agenda

- rASIP Application Space
 - Future Wireless Communication Systems
- UMIC Many Core Working Assumptions
- rASIP Design Space
 - Early rASIP Designs
 - Traditional Design Methodology
- Proposed rASIP Design Flow
 - Pre-Fabrication Design Flow
 - Post-Fabrication Design Flow
- Proof of Concept
- Outlook

Acknowledgement

- The research reported in this talk is based on work of area "RF Subystems and SoC Design" of the "UMIC Cluster" at the RWTH Aachen University
 - Principal Investigators
 - Prof. T.G. Noll
 Institute for Electrical Engineering and Computer Systems
 - Profs G. Ascheid / R. Leupers / H. Meyr Chair for Integrated Signal Processing Systems
 - Prof. S. HeinenChair of Integrated Analog Circuits
 - Prof. P. Mähönen
 Ericsson Chair of Wireless Networks
 - Prof. S. Kowalewski
 Chair for Software for Embedded Systems

UMIC Research Cluster at RTWH Aachen

- Ultra high-speed Mobile Information and Communication
 - extremely challenging application demands
 - limitations of mobile communications and
 - technology capabilities and constraints
- The design requires a tremendous leap
 - ⇒ needs collaborative research in
 - Mobile Applications & Services
 - Wireless Transport Platform
 - Radio Frequency Subsystems& System-on-Chip (SoC) Design
 - Cross Disciplinary Methods & Tools
- Total funding 36mio (2006-2011)
 - www.umic.rwth-aachen.de

Agenda

- rASIP Application Space
 - Future Wireless Communication Systems
- UMIC Many Core Working Assumption
- rASIP Design Space
 - Early rASIP Designs
 - Traditional Design Methodology
- Proposed rASIP Design Flow
 - Pre-Fabrication Design Flow
 - Post-Fabrication Design Flow
- Proof of Concept
- Outlook

Future Wireless Systems : Cognitive Radios

- Must sense or be cognitive of the environment
 - Other user interference, multipath, noise, etc.
 - Time-variations
- Must be intelligent to analyze the situation and find the optimal communications protocol, frequency, channel, etc.
- Must reconfigure for the channel and protocol required
- And...constantly adapt to mobile changing environments
- Will have multiple antennas (MIMO)
- They will make use of ultra-complex and ultra energy efficient signal processing to optimally use the available bandwidth

These radios "find the best protocol, frequency, and channel" to communicate over

Agenda

- rASIP Application Space
 - Future Wireless Communication Systems
- UMIC Many Core Working Assumptions
- rASIP Design Space
 - Early rASIP Designs
 - Traditional Design Methodology
- Proposed rASIP Design Flow
 - Pre-Fabrication Design Flow
 - Post-Fabrication Design Flow
- Proof of Concept
- Outlook

The "Key Algorithm" Proposition of the UMIC Platform

Each signal processing is based on a small number of fundamental algorithms ("Nuclei") that represent a significant amount of the computation.

⇒ Focus on an efficient composition ("design of an MPSoc) or mapping ("programming of the MPSoC")

References:

- UC Berkeley, EECS TR, June 15, 2006
- Ienne, Leupers: Customizable Embedded Processors, August 2006

8

HW/SW Partitioning: Spatial and Temporal Mapping

HW/SW Partitioning: Spatial and Temporal Mapping

© H. Meyr

1. System Architecture Concept (HW & SW)

Intel RMS View (Recognition, Mining, Synthesis)

Agenda

- rASIP Application Space
 - Future Wireless Communication Systems
- UMIC Many Core Working Assumptions
- rASIP Design Space
 - Early rASIP Designs
 - Traditional Design Methodology
- Proposed rASIP Design Flow
 - Pre-Fabrication Design Flow
 - Post-Fabrication Design Flow
- Proof of Concept
- Outlook

rASIP Design Space

Traditional Design Methodology

- Dedicated/ Partially Re-targetable Tools
- Separate Design Space Exploration
- Partial Design Space Exploration

Agenda

- Reconfigurable systems
- rASIP Application Space
 - Future Wireless Communication Systems
 - UMIC Many Core Working Assumption
- rASIP Design Space
 - Early rASIP Designs
 - Traditional Design Methodology
- Proposed rASIP Design Flow
 - Pre-Fabrication Design Flow
 - Post-Fabrication Design Flow
- Proof of Concept
- Outlook

PRE-Fabrication Phase

POST-Fabrication Phase

Stepwise Processor Modelling

step 1 : capturing the ISA

step 2: structuring the ISA

Agenda

- rASIP Application Space
 - Future Wireless Communication Systems
- UMIC Many Core Working Assumptions
- rASIP Design Space
 - Early rASIP Designs
 - Traditional Design Methodology
- Proposed rASIP Design Flow
 - Pre-Fabrication Design Flow
 - Post-Fabrication Design Flow
- Proof of Concept
- Outlook

GOST vs Blowfish Hotspot

GOST Hotspot

Blowfish Hotspot

Application Analysis

Initial results

- Not good for GOST, better for Blowfish
- Longer operation chains are key to speed-up

Identifying common characteristics

- Given cryptographic applications access constant S-Boxes from the hot-spots
- Such S-Boxes can be put inside scratch-pads accessible from custom instructions
- Conclusion: Scratch-pad access from custom instructions might result in higher speed-ups

Design Space Exploration Results

■ GOST: 105 data points

■ Blowfish: 120 data points

- Custom Instruction Synthesis with various latencies, area constraints
- From 0 to 4 scratch-pad access per custom instruction
- Total exploration time: 2 man days

Custom instructions Set synthesis tool: R.Leupers, K.Karuri, RWTH Aachen)

Overview: Architecture and Parameters

Cluster

- horizontal LEs per row C_H=[1..64]
- vertical LEs per column C_V=[1..64]
- global inputs north I_N=[0.4]
- global inputs west l_W=[0..4]
- global inputs south I_S=[0..4]
- global inputs east I_E=[0..4]
- output directions
- D_{CL}=any set from [north,west,south,east]
- output ports (LE-ports)
- granularity M_{CL}=[1..C_H] (only adjacent LEs in a row)

same for all clusters

general

- horizontal clusters in eFPGA S_H=[1..256]
- vertical clusters in eFPGA S_V=[1..256]

Routing Switch

- horizontal tracks W_H=[1..256]
- vertical tracks W_V=[1, 256]
- switch-positions as index of crossing vert. and hor. lines P_{RS,i}=[i_{V,i+}] (only F_S=3, no cascaded SPs)
- SP-definition SP_i=set of routes
- per track i: segment length Li=[1..256]
- granularity M_{RS}=[1..64] (only adjacent switch points)

same for all RS

Logic Element

Dedicated Routing Block (DRB)

 inputs from other LEs and broadcast defined per input of Core Logic [list]

Core Logic (CL) only for configurator

 set of functions with according CL-in-/ outputs (from DRB and dedicated) [list]

same for all LEs

Register-Stage

only for configurator

- LEs in a column per register N_{Reg}=[1..C_V]
- register-chain RC=[yes,no]
- LE-outputs with register [list]
- broadcast lines with register [list]

same for all register stages

Connection Box

- switch positions per cluster in-/output: set of tracks described by track index i_{track}, LE-index i_{LE} (row or column) and ranges of tracks r_{track}
 - $P_{CP,i}=f(i_{track},r_{track},i_{LE})$
- granularity M_{CB}=[1..64] (only adjacent connection points)

same for all CBs and defined only once per cluster-row (-column)

Source: T.G. Noll, RWTH Aachen

Parameterisable FPGA Architecture – Template

Parameterisable FPGA Architecture – Template

Cluster

LEs (horiz. / vert.)

Broadcast lines

shared SRAMs

I/O directions

Logic element

Functionality (Core logic)

Connectivity (DRB)

Register stage

LEs (Column) per Reg.

LE-outputs with Reg.

Type (Register, Latch, ...)

Routing Switch

lines

Switch-positions

Connectivity per Switch Point

Segment lengths

shared SRAMs

Connection Box

Lines per group

Window width

Phase position of window

Window periodicity

shared SRAMs

GNSS Prototype Hardware

- Multioperable GNSS frontend
 - Supports: NavStar GPS, Glonass, Galileo, Egnos, ...
 - 1575 1620 MHz
- Flexible FPGA based receiver

Arithmetic oriented eFPGA vs. commercial FPGA

Reconfigurable Processor vs. Standard Processor

29

Agenda

- Reconfigurable systems
- rASIP Application Space
 - Future Wireless Communication Systems
 - UMIC Many Core Working Assumption
- rASIP Design Space
 - Early rASIP Designs
 - Traditional Design Methodology
- Proposed rASIP Design Flow
 - Pre-Fabrication Design Flow
 - Post-Fabrication Design Flow
- Proof of Concept
- Outlook

Conclusion

- rASIPs allow combining the benefits of both ASIP and FPGA
 - In view of future wireless applications, this is desired
- Embedded domain-specific eFPGA macros are key for high area/energy efficiency
- Pre-fabrication design-space exploration is absolutely essential
- Post-fabrication tools for programmability and reconfigurability are absolutely essential
- Language-driven (LISA 3.0) rASIP tool suite is proposed

Outlook

Processor Design flow with Embedded FPGAs

- Current research
 - Generic Modelling, Exploration and Implementation of embedded FPGAs
 - Integration of rASIPs into complete SoC design flow (virtual prototyping)

Applying the Methodology

 Cognitive radio, an upcoming research challenge for system designers, will be handled with the proposed tools and methodology

Thank You

Intel RMS View (Recognition, Mining, Synthesis)

384 kbps UMTS Receiver BB Complexity

SW Programming Model

On Flexibility

Evolving / Changing Applications

