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Robust Systems in Scaled CMOS
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Globally Optimized Robust System Design
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Multi-Core Robust System Opportunities

� Multi-core ≠ massive redundancy (e.g., TMR)

� Reconfigurable reliability – turn protection on / off

� Power expensive, LOCAL gates inexpensive

� On-line self test – unique multi-core opportunities

� Required for Circuit Failure Prediction

� Essential for intelligent sparing

� Asymmetric core-level reliability

� Globally optimized performance vs. resilience
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Outline

� Introduction

� Built-In Soft Error Resilience (BISER)

� Circuit failure prediction

� Error Resilient System Architecture (ERSA)

� Conclusion
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Key Takeaway

� Logic soft errors – extremely important

� Classical error detection + recovery

� Expensive & complex

� Built-In Soft Error Resilience (BISER)

� Best of all – Efficient & practical

� Latch erratic errors also corrected

CORRECT Errors

DON’T Detect !!
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Who Cares About Soft Errors ?

� Transient errors: α-particles, neutrons

� 20K processor server farm

� 1 “major” error every 20 days

� Silent data corruption (SDC)

� $ 20K � $ 3,616 deposit

☺ $ 20K � $ 52,768 deposit

� Detected but uncorrected (DUE)

� Downtime cost: $100K - $10M / hour

Soft error rate 
contributions

Latch

Un
protected 
memory

Comb. logic
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BISER for Latch Errors
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BISER Latch Error Correction Principle
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Architecture-Aware BISER Insertion

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

cumulative latch coverage

c
u
m

u
la

ti
ve

 e
rr

o
r 

c
o
ve

ra
g
e

10X chip-level protection

9% chip-level
power penalty

Alpha 21264
Fault Injection 

Ack: Prof. S.J. Patel, 
UIUC for fault injector 

2X
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� Optimized BISER insertion [Seshia, Li & Mitra, DATE 07]

� Maximize protection, minimize power penalty
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BISER: Latch + Combinational Logic Errors
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BISER vs. Traditional Techniques
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Outline

� Introduction

� Built-In Soft Error Resilience (BISER)

� Circuit failure prediction

� Error Resilient System Architecture (ERSA)

� Conclusion
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Key Takeaway

WearoutInfant mortality Normal lifetime

Past

Time

Failure 
rate

� Superior to error detection

� Practical – test chip prototype

� Effective – up to 4x aging guardband reduction

� MPSoC opportunities: On-line self-test & adaptation

Future:
Burn-in 
difficult

Future:
NBTI 
aging

Solution: Circuit Failure Prediction
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Circuit Failure Prediction

� Predict failures – BEFORE errors appear

� Collect data over time: on-chip sensors

Failure Prediction Error Detection

Before errors appear After errors appear

+ No corrupt data & states – Corrupt data & states

+ Self-diagnosis possible – Limited diagnosis

☺☺☺☺ Applicability: Transistor aging, infant mortality

“A little fire is quickly trodden out;

Which, being suffer'd, rivers cannot quench.”

William Shakespeare
King Henry the Sixth,
Part III
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Failure Prediction for Transistor Aging
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Aging Sensor Principle 
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� Reduced guardband: close to best-case performance

Clock
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Signal transition outside Tg,
Stability checker output = 0 

Signal transition inside Tg,
Stability checker output = 1 

Built-In Aging Sensor: Test Chip Prototype
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Outline

� Introduction

� Built-In Soft Error Resilience (BISER)

� Circuit failure prediction

� Error Resilient System Architecture (ERSA)

� Conclusion
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Emerging Probabilistic Killer Applications

� Recognition, Mining, Synthesis (RMS)

� Cognitive, computational genomics, vision, …

� Large data sets

� Highly parallel

� Core algorithms

� Probabilistic belief propagation,                      

K-means clustering, Bayesian networks

“Our society is creating massive amounts of complex
data…There is a critical need …to recognize, mine

and synthesize all of this digital data.”

Pat Gelsinger

Technology @ Intel,

Feb. 2005
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RMS Error Resilience Opportunities

� Algorithmic resilience – probabilistic & iterative

� Low order bit-errors – minimal effects

� Known for decades

� Cognitive resilience

� “Acceptable” results OK

���� BAD NEWS

RMS + unreliable H/W � Doesn’t work

Control errors, High-order bit-errors

24

No ERSA: RMS + unreliable H/W → Doesn’t work

� Avg. GP + SP + BP errors to crash: 1.5 - 3.4

� FP errors: highly inaccurate results

RMS + ERSA at 1016 FITs (3,000 errors / sec.):

☺ No crashes, highly accurate results 

☺ Useful throughput maintained

☺ Linear speedup

24

ERSA Hardware Prototype Results
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ERSA: Asymmetric Reliability is Key
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ERSA: Error Resilient System Architecture

L2
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Relaxed Reliability Cores (RRCs) – Sequestered from OSSRC specification

• Highly reliable (expensive)

• Execute OS + system calls

• Execute “main thread”

• Assign worker threads to RRCs

• RRC memory bounds spec.

• RRC Timeout

• Handle RRC exceptions
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ERSA: Error Resilient System Architecture
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Relaxed Reliability Cores (RRCs) – Sequestered from OS

RRC specification

• Cheap & unreliable

• Configurable reliability: general apps

• Execute worker threads

• Reliable

• Memory bounds check

• Cache

• Context save & restore

• Suspend & resume
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RMS on ERSA

Worker thread
+ bounds check 
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Main Thread (SRC)
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� Error handling on SRC

� Terminate erroneous thread

� Continue to next iteration
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ERSA Prototype

� 4-socket, 2.6 GHz, Dual-core IA-32 processors

� 2 GB main memory

� Multiple Instruction Stream Processor (MISP) infrastructure 

[Hankins ISCA 06]

MISP Emulation Firmware

Error Injection into Hardware 
(Virtualization technology used)

Many-Core Runtime

Application Program

SRC RRC RRC RRC

RRC RRC RRCRRC
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ERSA Work Throughput Results
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ERSA Results: High-order Bit Errors
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ERSA Speedup Results
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Outline

� Introduction

� Built-In Soft Error Resilience (BISER)

� Circuit failure prediction

� Error Resilient System Architecture (ERSA)

� Conclusion
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Conclusion

� Robust system design � Global Optimization

� Unique opportunities: New thinking required

� BISER – unique soft error properties

� Cost-effective correction

� Circuit failure prediction – unique failure modes

� Effective prediction possible

� ERSA – unique future killer apps

� Resilient to extremely high error rates
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