

Robust System Design with MPSoCs Unique Opportunities

Subhasish Mitra Robust Systems Group

Departments of Electrical Eng. & Computer Sc.

Stanford University

Email: subh@stanford.edu

Acknowledgment: Stanford Robust Systems Group Students & Collaborators

Multi-Core Robust System Opportunities

- Multi-core ≠ massive redundancy (e.g., TMR)
- Reconfigurable reliability turn protection on / off
 - Power expensive, LOCAL gates inexpensive
- On-line self test unique multi-core opportunities
 - Required for Circuit Failure Prediction
 - Essential for intelligent sparing
- Asymmetric core-level reliability
 - Globally optimized performance vs. resilience

- Introduction
- Built-In Soft Error Resilience (BISER)
- Circuit failure prediction
- Error Resilient System Architecture (ERSA)
- Conclusion

5

Key Takeaway

- Logic soft errors extremely important
- Classical error detection + recovery
 - Expensive & complex
- Built-In Soft Error Resilience (BISER)
 - ❖ Best of all Efficient & practical
 - Latch erratic errors also corrected

CORRECT Errors
DON'T Detect !!

Who Cares About Soft Errors?

- Transient errors: α-particles, neutrons
- 20K processor server farm
 - ❖ 1 "major" error every 20 days
 - Silent data corruption (SDC)
 - **●*** \$ 20K **→** \$ 3,616 deposit
 - \$ 20K → \$ 52,768 deposit
 - Detected but uncorrected (DUE)
 - ➤ Downtime cost: \$100K \$10M / hour

Comb. logic

Un
protected
memory

Soft error rate contributions

BISER vs. Traditional Techniques				
	BISER	DICE	Duplicate	Multi-thread
Latch SER	> 25X ↓	25X ↓	Detected	Detected
Comb. logic SER	12 - 64X √	Ineffective	Detected	Detected
Chip energy	6 – 9%	> 15%	40-100%	~ 40 % (?)
Speed penalty	Latch: 1% Comb: 5%	1%	Minimal	~ 50%
Die size increase	~ None	~ None	Yes	Unclear
Downtime	None	None	Yes	Yes
Recovery	None	None	Complex	Complex
Configurability	Yes	No	Yes	Yes
Applicability	Unlimited	Unlimited	Unlimited	Processor 13

- Introduction
- Built-In Soft Error Resilience (BISER)
- Circuit failure prediction
- Error Resilient System Architecture (ERSA)
- Conclusion

Key Takeaway

Solution: Circuit Failure Prediction

- Superior to error detection
- Practical test chip prototype
- Effective up to 4x aging guardband reduction
- MPSoC opportunities: On-line self-test & adaptation

15

Circuit Failure Prediction

- Predict failures BEFORE errors appear
 - > Collect data over time: on-chip sensors
 - © Applicability: Transistor aging, infant mortality

Failure Prediction	Error Detection	
Before errors appear	After errors appear	
+ No corrupt data & states	Corrupt data & states	
+ Self-diagnosis possible	 Limited diagnosis 	

"A little fire is quickly trodden out; Which, being suffer'd, rivers cannot quench." William Shakespeare King Henry the Sixth, Part III

- Introduction
- Built-In Soft Error Resilience (BISER)
- Circuit failure prediction
- Error Resilient System Architecture (ERSA)
- Conclusion

2

Emerging Probabilistic Killer Applications

- Recognition, Mining, Synthesis (RMS)
 - ❖ Cognitive, computational genomics, vision, ...
 - Large data sets
 - Highly parallel
- Core algorithms
 - Probabilistic belief propagation,
 K-means clustering, Bayesian networks

"Our society is creating massive amounts of complex data...There is a critical need ...to **recognize**, **mine** and **synthesize** all of this digital data."

Pat Gelsinger Technology @ Intel, Feb. 2005

RMS Error Resilience Opportunities

- Algorithmic resilience probabilistic & iterative
 - ❖ Low order bit-errors minimal effects
 - Known for decades
- Cognitive resilience
 - "Acceptable" results OK

⊗ BAD NEWS

RMS + unreliable H/W → Doesn't work
Control errors, High-order bit-errors

2:

ERSA Hardware Prototype Results

No ERSA: RMS + unreliable H/W → Doesn't work

- © FP errors: highly inaccurate results

RMS + ERSA at 10¹⁶ FITs (3,000 errors / sec.):

- © No crashes, highly accurate results
- Useful throughput maintained
- © Linear speedup

- 4-socket, 2.6 GHz, Dual-core IA-32 processors
- 2 GB main memory
- Multiple Instruction Stream Processor (MISP) infrastructure [Hankins ISCA 06]

- Introduction
- Built-In Soft Error Resilience (BISER)
- Circuit failure prediction
- Error Resilient System Architecture (ERSA)
- Conclusion

33

Conclusion

- Robust system design → Global Optimization
 - Unique opportunities: New thinking required
- BISER unique soft error properties
 - Cost-effective correction
- Circuit failure prediction unique failure modes
 - Effective prediction possible
- ERSA unique future killer apps
 - Resilient to extremely high error rates