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Definition : HW/SW Interface for Definition : HW/SW Interface for 
MPSoCMPSoC

• Heterogeneous MPSoC :
– HW nodes
– SW nodes

• Software node :
– Specific CPU subsystem

• GPP, DSP, ASIP
• I/O, memory architecture

– Layered software architecture
• High level application code
• Hardware Dependent Software (HDS)

• HW/SW Interfaces for SoC Design
• Hide HDS and specific Hardware

• Provide SW API to high level code

• Provide HW protocol

• Offered different abstraction levels
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Classical HW/SW Interfaces Classical HW/SW Interfaces 
Abstraction Models : The GAPAbstraction Models : The GAP
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Abstract HW/SW interfaces Abstract HW/SW interfaces 
State Of ArtState Of Art

• Modeling HW/SW Interfaces
– SW oriented approach : fully implicit hardware

• OS validation can not include interaction with hardware

• No accurate performances estimation

– HW oriented approach : Binary software
• OS debug is fastidious 

• Simulation time too long

• System Level Design Methods
– Fixed architecture Model

– Restricted application/architecture (TTL,DSOC)

• We need executable HW/SW interface model allowing 
early OS debug and accurate performance estimation
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Objectives & ContributionsObjectives & Contributions

• Objectives
• Early Operating System validation
• Early performances measurement 

• Contributions
• A unified executable model of HW/SW interfaces
• A new design flow allowing fast and accurate 

simulation of abstract HW/SW interfaces
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OutlineOutline

• Introduction
• Hardware/Software Interfaces modeling 

Transaction Accurate Level
• Executable model in SystemC
• Experiments
• Future Works, conclusion
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Hardware Software Interface modeling at Hardware Software Interface modeling at 
Transaction Accurate LevelTransaction Accurate Level

• To be abstracted
– HAL software layer
– Details of CPU subsystem

• SW interface: HAL API
– Context switch
– Spin lock
– I/O read/write

• HW interface : HW protocol
– VCI, AMBA,…
– Specific HW interface (FIFO) Transaction Accurate Level
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Hardware Software Interface modeling at Hardware Software Interface modeling at 
Transaction Accurate Level detailsTransaction Accurate Level details
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HW/SW interface adaptationHW/SW interface adaptation

• Both HW and SW 
interfaces are modeled 
as a set of services

• Component based 
interface adaptation
– Software Elements
– Hardware Elements
– Hybrid Elements 
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Executable model in SystemCExecutable model in SystemC

• Software elements
– Based on SystemC sc_interface mechanism

• sc_export to provide a service (a function)
• sc_port to use a service

– Only classical C++ methods implement software 
services

– No SystemC SC_THREAD, SC_CTHREAD or 
SC_METHOD

– No SystemC wait

• Hardware elements
– All SystemC specificities can be used
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Executable model in SystemCExecutable model in SystemC

• Hybrid elements
– Combine HW and SW element

• Exported C++ methods to implement software 
services

• Calls to SystemC wait introduce time
• Contain SystemC threads to implement HW 

services

– Key element to model software sequential 
execution

• More details in the demonstration
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• Hybrid elements are the key elements to 
model sequential software execution
– Used to implement execution unit (CPU)
– A hardware thread represent the processor
– This hardware thread can model low level 

initialization.
– Call the OS_INIT software service provided by the 

application
– All the software is executed sequentially

• Software simulation time is introduced with 
annotation in the application.
– Calls to a consume service will model the time 

consumed by  the software in the processor thread 
context.

Hybrid element and Software Hybrid element and Software 
execution modelexecution model

Software Application
(appli + OS + com)

Exec Unit

boot

HW thread

Consume
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• EXEC_UNIT model the low 
level initializations and boot 
the OS

• OS and application are 
executed sequentially

• Call to CONSUME allow 
SystemC kernel to manage 
HW concurrent simulation.

• consume can also be called 
from the elements of the TA 
model to increase accuracy.

Simulation start

EXEC_UNIT OS Appli

Software simulation detailedSoftware simulation detailed
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Software

Motion JPEG application :Motion JPEG application :
System Level ModelSystem Level Model

• 6 software and 2 hardware tasks

• Execution model synchronized with 
communications

✔ High simulation speed
✔ Easiest functional validation
✗ No Operating System details
✗ No details on communications
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Motion JPEG application :Motion JPEG application :
Virtual Prototype ModelVirtual Prototype Model

• Software tasks are executed on a 
POSIX compliant OS with SMP 
support : MuteK

• Software Interpreted by N SPARC 
ISS
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HW/SW interface model at T.A.HW/SW interface model at T.A.

• Exec_Unit modeled 
multiprocessor parallelism 

• Communication 
concurrency modeled by 
the XBAR component

• Software memory space 
is effectively in the model.

• Context switching is 
implemented by software 
component
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ExperimentsExperiments

• 3 executable models

• Same SW application code in the 3 models

• Same OS code and libraries in TA and VP models
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Simulation results at Transaction Simulation results at Transaction 
Accurate levelAccurate level

• Software point of view :
– Give more Operating System debug capabilities 

thanks to hardware interaction (SpinLock, 
communication concurency, multiprocessor 
parallelism,...)

– Allow to use standard debugger

• Hardware point of view :
– More communication details compared to 

System Level and concurency
– waveform trace



MPSoC, june 2007 TIMA-SLS 22

Simulation results at Transaction Simulation results at Transaction 
Accurate levelAccurate level

• Both point of view :
– Hardware debugging
– Software debug informations mixed with 

hardware waveforms
– High simulation speed

Current thread running on a CPU

HW 
communications
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Future worksFuture works

• Apply the proposed approach to 
other abstraction level :
– Virtual Architecture, abstract the 

operating system and the specific 
communication

• Automatic native code 
annotation

– pipeline + cache models

• HW/SW interface design 
automation to enable :
– Architecture exploration

– Refinement
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ConclusionConclusion

• Executable Hardware/Software interface model.

• Results : Earlier HW/SW integration
– Fast and accurate simulation of full MJPEG system

– Executable model in a standard environment  (SystemC)

• Benefits :
– Operating System Validation

– Early performance estimation
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Thank you...Thank you...


