
Frédéric PÉTROT

Thanks to: A. Bouchhima, P. Gerin & A. Jerraya

Flexible and Executable HW/SW Flexible and Executable HW/SW
Interface Modeling For MPSoC Design Interface Modeling For MPSoC Design

Using SystemCUsing SystemC

MPSoC, june 2007 TIMA-SLS 2

Definition : HW/SW Interface for Definition : HW/SW Interface for
MPSoCMPSoC

• Heterogeneous MPSoC :
– HW nodes
– SW nodes

• Software node :
– Specific CPU subsystem

• GPP, DSP, ASIP
• I/O, memory architecture

– Layered software architecture
• High level application code
• Hardware Dependent Software (HDS)

• HW/SW Interfaces for SoC Design
• Hide HDS and specific Hardware

• Provide SW API to high level code

• Provide HW protocol

• Offered different abstraction levels

MPSoC architecture

Hardware
node

Interface

Communication Network

Software
node

Interface

MEM

Network
interface

DMA

COPRO

CPU

bridge

Multi-threaded Application

Operating
System

Specific
I/O

Hardware Abstraction Layer

Software node architecture

H
ard

w
are/S

o
ftw

are In
terface

H
D

S

HW/SW Interface

Software API

Hardware Protocol

MPSoC, june 2007 TIMA-SLS 3

Classical HW/SW Interfaces Classical HW/SW Interfaces
Abstraction Models : The GAPAbstraction Models : The GAP

Multi-threaded
Application

Software View of Hardware

HW Task 0 HW Task 1

MEM

Network
interface

ITC

DMA

SPARC
ISS

Multi-threaded Application

OS Lib2

Hardware Abstraction Layer

Lib1

COPRO

GMN communication network

HW Task 0 HW Task 1

Partition
ning

Integration

Correction cycle

Hardware Design

Software Design

Functional
Specification

ISA/RTL

Fully Implicit
HW/SW

Interface

Software API

Software API

Fully Explicit
HW/SW

Interface

Software API

Hardware Protocol

GAP

HW/SW Discontinuity

HW Task 0 HW Task 1

Multi-threaded
Application

Abstract
HW/SW

Interface

Software API

Hardware Protocol

Early HW/SW Integration

System LevelSystem Level Virtual PrototypeVirtual Prototype

MPSoC, june 2007 TIMA-SLS 4

Abstract HW/SW interfaces Abstract HW/SW interfaces
State Of ArtState Of Art

• Modeling HW/SW Interfaces
– SW oriented approach : fully implicit hardware

• OS validation can not include interaction with hardware

• No accurate performances estimation

– HW oriented approach : Binary software
• OS debug is fastidious

• Simulation time too long

• System Level Design Methods
– Fixed architecture Model

– Restricted application/architecture (TTL,DSOC)

• We need executable HW/SW interface model allowing
early OS debug and accurate performance estimation

MPSoC, june 2007 TIMA-SLS 5

Objectives & ContributionsObjectives & Contributions

• Objectives
• Early Operating System validation
• Early performances measurement

• Contributions
• A unified executable model of HW/SW interfaces
• A new design flow allowing fast and accurate

simulation of abstract HW/SW interfaces

MPSoC, june 2007 TIMA-SLS 6

OutlineOutline

• Introduction
• Hardware/Software Interfaces modeling

Transaction Accurate Level
• Executable model in SystemC
• Experiments
• Future Works, conclusion

MPSoC, june 2007 TIMA-SLS 7

OutlineOutline

• Introduction
• Hardware/Software Interfaces modeling

Transaction Accurate Level
• Executable model in SystemC
• Experiments
• Future Works, conclusion

MPSoC, june 2007 TIMA-SLS 8

Hardware Software Interface modeling at Hardware Software Interface modeling at
Transaction Accurate LevelTransaction Accurate Level

• To be abstracted
– HAL software layer
– Details of CPU subsystem

• SW interface: HAL API
– Context switch
– Spin lock
– I/O read/write

• HW interface : HW protocol
– VCI, AMBA,…
– Specific HW interface (FIFO) Transaction Accurate Level

Multi-threaded Application

Operating
System

Specific
I/O

Hardware

Hardware Protocol

HAL API

Transaction Accurate
HW/SW Interface
Executable model

HAL API

Hardware Protocol

MPSoC, june 2007 TIMA-SLS 9

Hardware Software Interface modeling at Hardware Software Interface modeling at
Transaction Accurate Level detailsTransaction Accurate Level details

HW PROTOCOL

HDS API

PU PU

DEV

Access Port

Map Port

reference

DEVDEV

Address
space

PE : Processing Element

DEV : device

Control
Unit

Execution
Unit

Access
Unit

Data
Unit

• Each unit may provide its
own SW services

• Each “unit” model may be
broken down in
components decorated
with timing information

HAL API = Set of all SW
services provided by

individual components
of the model

HAL API

Hardware Protocol

MPSoC, june 2007 TIMA-SLS 10

HW/SW interface adaptationHW/SW interface adaptation

• Both HW and SW
interfaces are modeled
as a set of services

• Component based
interface adaptation
– Software Elements
– Hardware Elements
– Hybrid Elements

SW Interface

HW Interface

S1

S3

S1
Process

Process

Process SW
HW

Services:

MPSoC, june 2007 TIMA-SLS 11

OutlineOutline

• Introduction
• Hardware/Software Interfaces modeling

Transaction Accurate Level
• Executable model in SystemC
• Experiments
• Future Works, conclusion

MPSoC, june 2007 TIMA-SLS 12

Executable model in SystemCExecutable model in SystemC

• Software elements
– Based on SystemC sc_interface mechanism

• sc_export to provide a service (a function)
• sc_port to use a service

– Only classical C++ methods implement software
services

– No SystemC SC_THREAD, SC_CTHREAD or
SC_METHOD

– No SystemC wait

• Hardware elements
– All SystemC specificities can be used

MPSoC, june 2007 TIMA-SLS 13

Executable model in SystemCExecutable model in SystemC

• Hybrid elements
– Combine HW and SW element

• Exported C++ methods to implement software
services

• Calls to SystemC wait introduce time
• Contain SystemC threads to implement HW

services

– Key element to model software sequential
execution

• More details in the demonstration

MPSoC, june 2007 TIMA-SLS 14

• Hybrid elements are the key elements to
model sequential software execution
– Used to implement execution unit (CPU)
– A hardware thread represent the processor
– This hardware thread can model low level

initialization.
– Call the OS_INIT software service provided by the

application
– All the software is executed sequentially

• Software simulation time is introduced with
annotation in the application.
– Calls to a consume service will model the time

consumed by the software in the processor thread
context.

Hybrid element and Software Hybrid element and Software
execution modelexecution model

Software Application
(appli + OS + com)

Exec Unit

boot

HW thread

Consume

MPSoC, june 2007 TIMA-SLS 15

• EXEC_UNIT model the low
level initializations and boot
the OS

• OS and application are
executed sequentially

• Call to CONSUME allow
SystemC kernel to manage
HW concurrent simulation.

• consume can also be called
from the elements of the TA
model to increase accuracy.

Simulation start

EXEC_UNIT OS Appli

Software simulation detailedSoftware simulation detailed

MPSoC, june 2007 TIMA-SLS 16

OutlineOutline

• Introduction
• Hardware/Software Interfaces modeling

Transaction Accurate Level
• Executable model in SystemC
• Experiments
• Future Works, conclusion

MPSoC, june 2007 TIMA-SLS 17

Software

Motion JPEG application :Motion JPEG application :
System Level ModelSystem Level Model

• 6 software and 2 hardware tasks

• Execution model synchronized with
communications

✔ High simulation speed
✔ Easiest functional validation
✗ No Operating System details
✗ No details on communications

HARDWARE

TRAFFIC
GENERATOR

VIDEO
OUT

DEMUX

VLD IQ ZZ

IDCTLIBU

MPSoC, june 2007 TIMA-SLS 18

Motion JPEG application :Motion JPEG application :
Virtual Prototype ModelVirtual Prototype Model

• Software tasks are executed on a
POSIX compliant OS with SMP
support : MuteK

• Software Interpreted by N SPARC
ISS

• Rest of the system at RTL level
MEM

Network
interface

ITC

DMA

SPARC
ISS

Multi-threaded Application

Mutek
SMP OS

Lib KPN

SPARC HAL

LibC

COPRO

GMN communication network

Traffic
Generator

Video
OUT

✔ Detailed communication
✔ Performances precision
✗ Fastidious Operating System

Validation
✗ Very slow simulation

T.A. executable
model

Software API

Hardware Protocol

MPSoC, june 2007 TIMA-SLS 19

HW/SW interface model at T.A.HW/SW interface model at T.A.

• Exec_Unit modeled
multiprocessor parallelism

• Communication
concurrency modeled by
the XBAR component

• Software memory space
is effectively in the model.

• Context switching is
implemented by software
component

• Interruptions are handled HW
PROTOCOL

HAL
API

OS
INIT

SMP
THIS

COUNT

IO_ACCESS
READ

WRITE

DIAGNOSTIC
CONSUME

MEM VCI_WRAPPER

FIFO

XBAR

CXT
INIT

SWITCH

SPIN
LOCK

UNLOCK

CONTEXT

EXEC_UNIT

HS_WRITEREQ ACK DATA

IT
MASK

UNMASK

IT_CTRL

INTERRUPT

SPIN

HS_READ REQ ACK DATA

DMA

MPSoC, june 2007 TIMA-SLS 20

ExperimentsExperiments

• 3 executable models

• Same SW application code in the 3 models

• Same OS code and libraries in TA and VP models

Host machine
Operating System

(Linux)

POSIX API

POSIX API

Software View of Hardware

Traffic
Generator

RAMDAC

System LevelSystem Level

Traffic
Generator

RAMDAC

HW
PROTOCOL

HAL
API

OS

INIT
SMP
THIS

COUNT

IO_ACCESS
READ

WRITE

DIAGNOSTIC

CONSUME

MEM VCI_WRAPPER

FIFO

XBAR

CXT
INIT

SWITCH

SPIN
LOCK

UNLOCK

CONTEXT

EXEC_UNIT

HS_WRITEREQ ACK DATA

IT
MASK

UNMASK

IT_CTRL

INTERRUPT

SPIN

HS_READ REQ ACK DATA

DMA

HW
PROTOCOL

HAL
API

OS

INIT

OS

INIT
SMP
THIS

COUNT

SMP
THIS

COUNT

IO_ACCESS
READ

WRITE

IO_ACCESS
READ

WRITE

DIAGNOSTIC

CONSUME

DIAGNOSTIC

CONSUME

MEMMEM VCI_WRAPPERVCI_WRAPPER

FIFO

XBAR

CXT
INIT

SWITCH

CXT
INIT

SWITCH

SPIN
LOCK

UNLOCK

SPIN
LOCK

UNLOCK

CONTEXTCONTEXT

EXEC_UNITEXEC_UNIT

HS_WRITEREQ ACK DATA

IT
MASK

UNMASK

IT
MASK

UNMASK

IT_CTRLIT_CTRL

INTERRUPTINTERRUPT

SPINSPIN

HS_READ REQ ACK DATA

DMADMA

Transaction AccurateTransaction Accurate

MEM

Network
interface

ITC

DMA

SPARC
ISS

Motion JPEG Application Motion JPEG Application Motion JPEG Application

Hardware Abstraction Layer

Mutek OS
(POSIX)

C LibCom Lib
Mutek OS
(POSIX)

C LibCom Lib

Network
interface

GMN communication network

Traffic
Generator

RAMDAC

Virtual PrototypeVirtual Prototype

Executable model

MPSoC, june 2007 TIMA-SLS 21

Simulation results at Transaction Simulation results at Transaction
Accurate levelAccurate level

• Software point of view :
– Give more Operating System debug capabilities

thanks to hardware interaction (SpinLock,
communication concurency, multiprocessor
parallelism,...)

– Allow to use standard debugger

• Hardware point of view :
– More communication details compared to

System Level and concurency
– waveform trace

MPSoC, june 2007 TIMA-SLS 22

Simulation results at Transaction Simulation results at Transaction
Accurate levelAccurate level

• Both point of view :
– Hardware debugging
– Software debug informations mixed with

hardware waveforms
– High simulation speed

Current thread running on a CPU

HW
communications

MPSoC, june 2007 TIMA-SLS 23

OutlineOutline

• Introduction
• Hardware/Software Interfaces modeling

Transaction Accurate Level
• Executable model in SystemC
• Experiments
• Future Works, conclusion

MPSoC, june 2007 TIMA-SLS 24

Future worksFuture works

• Apply the proposed approach to
other abstraction level :
– Virtual Architecture, abstract the

operating system and the specific
communication

• Automatic native code
annotation

– pipeline + cache models

• HW/SW interface design
automation to enable :
– Architecture exploration

– Refinement

Transaction Accurate Level

Multi-threaded Application

Operating
System

Specific
I/O

Hardware

Hardware Protocol

HAL API

Transaction Accurate
HW/SW Interface
Executable model

HAL API

Hardware Protocol

Virtual Architecture
HW/SW Interface
Executable model

OS/Com/... API

Hardware Protocol

MPSoC, june 2007 TIMA-SLS 25

ConclusionConclusion

• Executable Hardware/Software interface model.

• Results : Earlier HW/SW integration
– Fast and accurate simulation of full MJPEG system

– Executable model in a standard environment (SystemC)

• Benefits :
– Operating System Validation

– Early performance estimation

MPSoC, june 2007 TIMA­SLS 26

Thank you...Thank you...

