'S Tachn ses of Informatics and Microelectronics
“or Computer Architecture

Flexible and Executable HW/SW
Interface Modeling For MPSoC Design
Using SystemC

Frédéric PETROT

Thanks to: A. Bouchhima, P. Gerin & A. Jerraya

Definition : HW/SVVNRE

* Heterogeneous MPSoC :

Hardware Software
— HW nodes node node
— SW nodes Interface Interface

Communication Network
MPSoC architecture

« Software node :

— Specific CPU subsystem
 GPP, DSP, ASIP
» |/O, memory architecture Multi-threaded Application

— Layered software architecture Software AP)
« High level application code
« Hardware Dependent Software (HDS)

« HW/SW Interfaces for SoC Design HWISW Interface
» Hide HDS and specific Hardware
» Provide SW API to high level code
* Provide HW protocol Hardware Protocol
« Offered different abstraction levels Software node architecture

HDS

MPSoC, june 2007 TIMA-SLS

aoeI9ju| a1em)og/aiempieH

Classical HW/SWARtEAES
=< Abstraction ModelSENMNE g;\p

Multi-threaded Multi-threaded
Application Application

Sottware AP Software API
Fully Implicit - Abstract

‘ Multi-threaded Application

Software API
Fully Explicit
HW/SW

HW/SW — HW/SW

Interface
Software AP Interface

Software View of Hardware Hardware Protocol

Interface

Hardware Protocol

HW Task 0 HW Task 1 HW Task 0 HW Task 1 HW Task 0 HW Task 1

System Level Virtual Prototype

Software Design

e -

Functional
Specification

Par:'it:‘t;on —— Early HW/SW Integration g Integration

N it

ISA/RTL

Hardware Design

Correction cycle

MPSoC, june 2007 TIMA-SLS

Abstract HW/SWintenaees

=i?e State Of Art

 Modeling HW/SW Interfaces

— SW oriented approach : fully implicit hardware
» OS validation can not include interaction with hardware
 No accurate performances estimation

— HW oriented approach : Binary software
* OS debug is fastidious
« Simulation time too long
« System Level Design Methods

— Fixed architecture Model
— Restricted application/architecture (TTL,DSOC)

 We need executable HW/SW interface model allowing
early OS debug and accurate performance estimation

MPSoC, june 2007 TIMA-SLS

Objectives & Contriisiiie

* Objectives
- Early Operating System validation
- Early performances measurement

 Contributions
* A unified executable model of HW/SW interfaces

* A new design flow allowing fast and accurate
simulation of abstract HW/SW interfaces

MPSoC, june 2007 TIMA-SLS

ﬁ“;% Outline

* Introduction

 Hardware/Software Interfaces modeling
Transaction Accurate Level

 Executable model in SystemC
 Experiments
 Future Works, conclusion

MPSoC, june 2007 TIMA-SLS

Outline

 Hardware/Software Interfaces modeling
Transaction Accurate Level

MPSoC, june 2007 TIMA-SLS

Hardware SoftwaleN e CENIISME IRl
=€ Transaction Accuraiedsevel

 To be abstracted

_ HAL Software Iayer Multi-threaded Application
— Details of CPU subsystem Operating specifc
. ystem
« SW interface: HAL API AL
— Context switch ditiils
. Transaction Accurate
— Spin lock HW/SW Interface
— 1/O read/write Executable model
. Hardware Protocol
 HW interface : HW protocol ey
_ Specific H\W interface (F|FO) Transaction Accurate Level

MPSoC, june 2007 TIMA-SLS

Execution
Unit

Access
Unit

Data
Unit

Hardware SoftWwareN e CEN s E iRt

Transaction AccUratedeyeIiEEis;

o)

(@)

& 0)

DEV

|—ODEV

A A

T e A
4 N\
() ()

Control
Unit

»

\ 4

DEVO—‘

3

Hardware Protocol

T

" HAL API = Set of all SW

services provided by
individual components
of the model
/

« Each unit may provide its
own SW services

« Each “unit” model may be
broken down in
components decorated
with timing information

Address
space
o) Access Port

o Map Port

MPSoC, june 2007

..................... » reference

PE : Processing Element
DEV : device

TIMA-SLS

e Both HW and SW
Interfaces are modeled
as a set of services

 Component based
iInterface adaptation

— Hardware Elements
— Hybrid Elements

MPSoC, june 2007 TIMA-SLS

W HW/SW interface acasiciitsy

SW Interface =

Services:
. O sSwW
O HW

> HW Interface

10

 Executable model in SystemC

MPSoC, june 2007 TIMA-SLS

11

Executable modelNnESySiEi e

o Software elements

— Based on SystemC sc _interface mechanism
» sc_export to provide a service (a function)
e sc_port to use a service

— Only classical C++ methods implement software
services

— No SystemC SC_THREAD, SC_CTHREAD or
SC_METHOD

— No SystemC wait

 Hardware elements
— All SystemC specificities can be used

MPSoC, june 2007 TIMA-SLS 12

@ Executable modeINnESYSIEINe

* Hybrid elements
— Combine HW and SW element

« Exported C++ methods to implement software
services

 Calls to SystemC wait introduce time

« Contain SystemC threads to implement HW
services

— Key element to model software sequential
execution

 More details in the demonstration

MPSoC, june 2007 TIMA-SLS

13

« Hybrid elements are the key elements to
model sequential software execution (appli + OS + com)

« Software simulation time is introduced with
annotation in the application.

Hybrid elementanc SO
execution model

Software Application

Used to implement execution unit (CPU)

A hardware thread represent the processor

This hardware thread can model low level
initialization.

Call the OS_INIT software service provided by the
application

All the software is executed sequentially

Calls to a consume service will model the time
consumed by the software in the processor thread

context. Exec Unit

MPSoC, june 2007 TIMA-SLS 14

1|lf‘ Software simulaticnieErE

¢ EXEC UNIT mOdeI the lOW Simulation start

level initializations and boot EYEC UNIT OS Aopli
the OS | - | |
* OS and application are |1

executed sequentially

« Call to CONSUME allow
SystemC kernel to manage
HW concurrent simulation.

e consume can also be called
from the elements of the TA
model to increase accuracy.

= u oA = = = = o = = B - - g - - - B -
e

MPSoC, june 2007 TIMA-SLS 15

 Experiments

MPSoC, june 2007

TIMA-SLS

16

Motion JPEG applicationE

mi’s System LevellVGHE)

6 software and 2 hardware tasks

« Execution model synchronized with
communications

Software

v' High simulation speed
v' Easiest functional validation
X No Operating System details

L 2 2
X No details on communications

HARDWARE

MPSoC, june 2007 TIMA-SLS

17

Motion JPEG applicationE

si’e Virtual PrototypeNlicHE

o Software tasks are executed on a

POSIX compliant OS with SMP

support : MuteK

LibC Lib KPN
« Software Interpreted by N SPARC m --

Software API
1SS
* Rest of the system at RTL level

T.A. executable

model
v Detailed communication
v Performances precision Hardware Protocol
X Fastidious Operating System Traffic

Validation Generator

X Very slow simulation

MPSoC, june 2007 TIMA-SLS

18

 Exec Unit modeled
multiprocessor parallelism

 Communication
concurrency modeled by
the XBAR component

« Software memory space
is effectively in the model.

« Context switching is
implemented by software
component

» Interruptions are handled

MPSoC, june 2007

H A ‘E-EI’ A D IGNOS G O
APl |@iooy | witcs

3

CONTEXT

TIMA-SLS

Experiments

3 executable models

Same SW application code in the 3 models

Same OS code and libraries in TA and VP models

System Level

Transaction Accurate

Virtual Prototype

Motion JPEG Application

Motion JPEG Application

POSIX API

Host machine
Operating System
(Linux)

POSIX APl

Software View of Hardware

Traffic

RAMDAC
Generator

MPSoC, june 2007

Motion JPEG Application

Mutek OS

Traffic

RAMDAC
Generator

TIMA-SLS

Mutek OS | I

Hardware Abstraction Layer

GMN communication network

Network Network
interface interface

Traffic

RAMDAC
Generator

Simulation resultsSrathiciisEisnis)s
=< Accurate level

« Software point of view :

— Give more Operating System debug capabilities
thanks to hardware interaction (SpinLock,
communication concurency, multiprocessor
parallelism,...)

— Allow to use standard debugger

« Hardware point of view :

— More communication details compared to
System Level and concurency

— waveform trace

MPSoC, june 2007 TIMA-SLS 21

(.—l.-
L

Simulation| resuitsSiatayEisals
=* Accurate level

or)

* Both point of view :
— Hardware debugging

— Software debug informations mixed with
hardware waveforms

— High simulation speed

Signals Wawves

. —r k3
T i

address[31:0]= I V0000000
L O ComMMUNICatiONS |

size[T7:0]1=00
wr =0
address[31:0]1=00000000 | [EITITITI
data[31:0]1=00000000 | [IIIILII]
rd =0
size[T:0]1=00
wr =0
thread_id[31:0]1=0000000

MPSoC, june 2007 TIMA-SLS 22

 Future Works, conclusion

MPSoC, june 2007 TIMA-SLS

23

Future works

 Apply the proposed approach to
other abstraction level :

— Virtual Architecture, abstract the
operating system and the specific
communication

 Automatic native code
annotation

— pipeline + cache models

« HW/SW interface design
automation to enable :

— Architecture exploration
— Refinement

MPSoC, june 2007 TIMA-SLS

Multi-threaded Application

OS/Com/... APl

Virtual Architecture
HW/SW Interface
Executable model

Hardware Protocol

Hardware Protocol
Hardware

Transaction Accurate Level

24

Conclusion
an

 Executable Hardware/Software interface model.
* Results : Earlier HW/SW integration

— Fast and accurate simulation of full MUPEG system
— Executable model in a standard environment (SystemC)

 Benefits :

— Operating System Validation
— Early performance estimation

MPSoC, june 2007 TIMA-SLS

25

4":% awwmgmmm

Thank you...

MPSoC, june 2007 TIMA-SLS 26

