Is SDR Mature For Mobile Baseband Solutions?

Prof. Dr. Ulrich Ramacher COM IN

Our solution: Baseband Processor MuSIC

- 3-Level Memory Hierarchy
 - external DRAM/Flash
 - Shared Memory
 - Local Memories
- GP Core for L1 Ctrl & MAC
- reconf. accelerators for FIR and Channel Encoding/Decoding

Concept of Multi-Tasked SIMD Core

- 4 SIMD Execution Units
- Long Instruction Word
 - Computation Slot (DSP Pipe & IU)
 - Memory Slot
 - Communication Slot
- 4 Interleaved Threads
- Multi-tasked GP core to control the SIMD core
- Local Data Memories instead of L1 Cache

PE memory slot:

DSP Pipe:

Integer Unit:

Inter-PE Communication:

RC1632:

82 load/store instructions

25 instructions

122 instructions

27 instructions

230 instructions (159 in 16bits, 71 in 32 bits)

MuSIC-1 Silicon in Dec. 2006

Technology: 90 nm CMOS

28 million trs for logic + 768KB for memory

Area: 57 mm²

Dilemma of Classical Solutions

MuSIC-1 Evaluation Board

Copyright © Infineon Technologies 2006. All rights reserved.

WCDMA function – thread mapping

Cell Searcher			
Slot boundary detection	Path	Cell	Rake/
Frame boundary detectionScrambling code identification	Srch.	Srch.	Combi
			ner
 Path Searcher Delay Profile Measurement 			
Finger Assignment			
■ Rake Code Generation ←	Code/	Time	Chan.
 Scrambling/OVSF-Code Generation (for each channel/base) 	Pflot	Track.	Est.
	Gen.		
 Rake Processing (rake finger) Despreading of CPICH and one other channel (e.g. BCH, DCH) 			
Time Tracking			
■ Maximum Ratio Combiner (MRC)	SIR	Power	AGC
 Maximum Ratio Combiner (MRC) Combing of rake finger outputs (one for each channel/base) 			AGC
 Combing of rake finger outputs (one for each channel/base) Channel Estimation 	Est.	Ctrl	
AFC Measurement and Ctrl			Buffer
■ TPC/SIR←		_	Manager
Extraction of power Ctrl Bits			Thread
Signal/Interference measurement(Power Ctrl)	AFC	TX	RX
		FEC	FEC
 Outer Receiver Deinterleaving, Demapping, Decoding (RX FFC), TFCI proc. 			0
Define fleaving, Define processing (RX FLC), 1FC1 proc.			
Transmitter (T) (FFG) Introduction Managing Course discussions			
Encoding (TX FEC), Interleaving, Mapping, SpreadingPower Ctrl			
_ 107761 661			

Add. threads: Phy-Ctrl, Buffer Manager (incl. RSSI, AGC), FE/FIR-Ctrl, T/V-Ctrl Copyright © Infineon Technologies 2006. All rights reserved.

Total baseband power incl. ARM and Accelerators

WCDMA 3 basest. 8 fingers

300 MHz	90nm	65nm	
4 simd cores	268	159	
fir acc	57	33	
tv acc	49	27	
arm subsystem	40	24	
bus & mem & sync & rfif	63	37	
MuSIC total	477	280	

- Worst case savings
- Further power saving measures:

Use of low, regular, and high $V_{\rm t}$ for minimal active $\,$ power as well as leakage $\,$ Use of 8 metal layers instead of 6 $\,$

Area and power shrinkage by full custom design

Multiple voltage domains instead of a single one

MuSIC VC Performance in 65nm

	Coding Perfomance	Format	SIMDCores	Power Consumption		
H.264 Decode	8000 Macro Blocks / (s x SIMDCore)	CIF/15fps	1	11 mW		
		CIF/30fps	1+1RC	22 mW		
H.264 Encode 4000 Macro Blocks / (s x SIMDCore)	CIF/15fps	1+1RC	22 mW			
		CIF/30fps	1+2RC	45 mW		
MPEG-4 Decode	13000 Macro Blocks / (s x SIMDCore)	CIF/15fps	1	7 mW		
		CIF/30fps	1	13 mW		
		VGA/30fps	1+2RC	40 mW		
	6500 Macro Blocks / (s x SIMDCore)	CIF/15fps	1	13 mW		
		CIF/30fps	1+1RC	25 mW		
		VGA/30fps	2+4RC	75 mW		

Decision: Commercialize SDR Mobile Platforms

Phase

Milestones & Achievements

Innovation

Innovation Project:

- Multi-processors architecture (SIMD cores)
- Asynchronous control → flexibility & power
- Virtual Prototyping of entire SDR Core

Test Chip

Innovation Project:

- MuSIC-1 Test chip in 90nm CMOS technology
- 4 SIMD Cores @ 300MHz, ARM9 @ 200MHz
- Proof-of-Concept of chip architecture / area

Proof of Concept

Innovation Project:

- MuSIC-1 Evaluation Board
- Proof-of-Concept of SDR architecture / Power
- Demo of multi-standard / LTE development kit

Product

SDR Mobile Platforms Business:

- Commercialize SDR: SDR Core IP up to Full Platform business models
- MuSIC-2: 8 SIMD, 2 ASIP, ARM11, and MM @ 65nm technology
- Development kit for full system integration (incl. RF) / field tests
- SW Development & Debug tools / multi-standards mapping

BB Summary

- Multiple standards become the standard for mobile radios
- The multiple radios solutions of today will be replaced by programmable multi-processor solutions
- SW programmable multi-processor solution in 2010 latest
 - competitive area+power
 - High re-use in HW&SW because of superior flexibility