
Towards a high performance parallel platform
for dependable embedded systems

Mitsuhisa Sato
University of Tsukuba

JST-CREST “Dependable Operating Systems for
Embedded Systems” Project

2 2007/6/28 MPSoC2007

Outline

Background
Trends of Microprocessors & embedded applications

About our project
Concept of our project on high performance parallel platform of multi-core
and multiprocessors systems for near-future dependable embedded systems

OpenMP for Parallel embedded Systems

Research topics in our project
Power-aware runtime management for OpenMP
Reliable DSM and check pointing
Reliable and high-performance communication layer using multiple link
High-speed and low-power interconnect by PCI-Express Gen2

Summary

12-4-1

3 2007/6/28 MPSoC2007

Background: Trends of Microprocessors & embedded applications
Needs of high performance in embedded systems

Networking appliance, etc…
RMS (Recognition, Mining, Synthesize) (by P. Gelsinger@Intel)
High-performance and real-time processing

Car navigation system
High-level GUI in embedded system, such as 3D volume rendering
3D recognition by collecting/synthesizing info from multi-cameras.
….

Multi-core, Multi-processors
Parallel embedded system for high performance
Allows flexible power and performance management by activating/inactivating
each core (or DVFS)
Good for both high-performance and low-power!!!
Redundancy by multi-processors for fault-tolerance.

P = N C V FPower consumption of multi-core/multi-processors

P = N C V f
#Core Active

Rate
Capacitance

of Circuit
Voltage Clock rate

4 2007/6/28 MPSoC2007

Redundancy

Parallel
embedded
systems

Quality real-time high performance low power

Reliability (dependability)
Processor

Use a part of system Backup if fault occurs Adapt performance for requirement

Network

Concept of our project
on high performance dependable parallel embedded systems

12-4-2

5 2007/6/28 MPSoC2007

Objective of our project
“Low-power and Highly Dependable Parallel Computer Platform
for Embedded Systems” (U. of Tsukuba and Renesas)

Under JST-CREST program, research area “Dependable Operating Systems
for Embedded Systems Aiming at Practical Applications”

Research Supervisor: Dr. Mario Tokoro (SVP, Corporate Executive, Sony Corporation)

Project period: From Oct. 2006 to Nov. 2011 (5 years)

Investigate dependable technologies for a high-performance parallel
embedded computer platform with multi-core/multiprocessor systems.

Develop a programming tools and environment for embedded parallel
programs, and run-time mechanism for dependability.

OpenMP and Reliable Software DSM & Checkpoint/Restart

Develop a power management run-time system to optimize performance and
power consumption under real-time constraints

OpenMP power-aware runtime system

Develop communication facility and multiple network link hardware to provide
fault-tolerance and power management in the communication layer of
embedded parallel systems.

Multi-link comm. software and PCIe Gen2 network communicator

6 2007/6/28 MPSoC2007

What’s OpenMP
Standard parallel programming model and API for shared memory multiprocessors

Extend the base language (Fortran/C/C++) with directives or pragma
Incremental parallel programming
keep sequential semantics with ignoring directives
allows range of programming styles
For scientific applications. Support for loop-based parallelism and task-parallelism
Target: small-scale(16processors to medium-scale (64processors
The last version 3.0 spec focuses on task-parallelism.

OpenMP ARB
http://www.openmp.org/

Example
Loop parallelized by OpenMP directive

#pragma omp parallel for reduction(+:s)
for(i=0; i<1000;i++) s+= a[i];

1 2 3 4 1000

++ S

1 2 1000250 251 500 501 750 751

++ ++ ++ ++

++

Sequential Exec.

Parallel Exec.

processor1 Processor 2 processor3 processor4

for(i=0;i<1000; i++)
S += A[i]

12-4-3

7 2007/6/28 MPSoC2007

OpenMP and multi-core/multi-processors
Multiprocessors with “simple” cores

Exploit thread-level coarse-grain parallelism
It may provide better performance than “complex” superscalar does in the same die

Good for applications with large amount of parallelism
Simpler and low-power architecture and implementation
low-latency communications between cores

OpenMP can be used for a “simple” and “easy-to-use” parallel programming
environment

Most of Multi-core is naturally “shared memory” multiprocessors
Exploit thread-parallelism by programmers

Research issues in OpenMP for multi-core
Current most multi-core embedded processors are not used for “parallel programming”

Lack of parallel programming environment!!

How to express the parallelism of embedded applications
The current OpenMP supports loop-level parallelism in scientific applications
Needs more task-level parallelism with constraints such as real-time task.

Thread scheduling for efficient execution of multi-threaded programs.
Co-scheduling, gang-scheduling with real-time constraints

Embedded multicore may not support “true” shared memory.
Cell BE@IBM, …

8 2007/6/28 MPSoC2007

Power-aware runtime system for OpenMP
In a parallel program, Open is usually used to exploit parallelism for high
performance.
We propose OpenMP run-time scheduling for a tradeoff between performance
and power in real-time embedded applications for power-aware computing.

Typical requirements in real-time applications is to execute a reserved job within a
certain period.
In terms of power efficiency, program does not necessarily execute fast as long as it
can meet the deadline.
OpenMP power-aware runtime system adjusts the number of core to execute the
program for power-aware computing in embedded systems.

OpenMP can be used as a user-transparent programming model for power-
aware computing.

…...
/* Parallel loop */
#pragma omp parallel for
for(i = 0; i< N; i++){
… do some work …

}
……

OpenMP Loop-level parallel description by directives
Note that no specification of number of processors
in OpenMP programs, but given by runtime

According to the load of task and the time to deadline,
control the number of core for power-efficient execution
load (large), time to deadline (near) -> increase #cores -> power (high)
load (small), time to deadline (far) -> decrease #core -> power (low)

12-4-4

9 2007/6/28 MPSoC2007

Reliable Software Distributed Shared Memory System for
Parallel Embedded Systems

Software Distributed Shared Memory (DSM)
Provides shared memory by software
OpenMP can be used to develop parallel program
At the point of barrier synchronization, shared
memory consistency is maintained.
Home node of the pages keep the consistent
contents of pages in a conventional DSM

Reliable Software DSM
By having redundant home nodes, the content of a
page can be recovered when the faults occurs at one
home node.
A kind of coordinated checkpoint of parallel program.
Local memory also should be check-pointed by
conventional check pointing.

Optimization for embedded systems
Remote paging to other processors (swap-out to
different processor memory)
Disk-less support
Small foot-print

proc1 proc2 proc3 proc4

Reference

Home
node

Home
node

update

Faults occurs
at Node 3

proc1 proc2 proc3 proc4

replace
home node

Recover from proc1

10 2007/6/28 MPSoC2007

Reliable high-performance system interconnect facility
We will develop a communication layer to realize high-performance and
high-reliability, power-awareness using multiple links of high speed
interconnect simultaneously.

Use many links (trunking) for high performance
Adjust the number of links for power saving
Switch between links when faults are detected

PCI-Express Gen2 and GbE link

According to bandwidth
request, control the number
of links -> saving power

According to bandwidth
requirement, control the
speed of each link ->
saving power

proc1 proc2

When the faults on link is
detected, switch to other link
to resume the communication
-> fault tolerance

proc1 proc2

Remote memory communication (one-sided), DMA transfer,
page transfer API for software DSM.
Link fault detection mechanism
Based on our previous research “RI2N: Redundant
Interconnection with Inexpensive Network”

T. Okamoto, S. Miura, T. Boku, M. Sato, D. Takahashi,
"RI2N/UDP: High bandwidth and fault-tolerant network for a
PC-cluster based on multi-link Ethernet", Proc. of CAC2007
(included in Proc. of IPDPS2007), CD-ROM, Long Beach, 2007.

12-4-5

11 2007/6/28 MPSoC2007

High-speed and Low-power interconnect
for parallel embedded systems

We are currently developing a high-speed and low-power interconnect chip
(communicator chip) to connect processors and devices in parallel
embedded systems

Communicator chip as a network switch
with packet routing.
Adopt PCI-Express Gen2 as network links

5/2.5Gbps/link (selectable)
Power management (ON/OFF)
It can be used for both interconnect and I/O

Development of PCI-Express PHY
Implementation using 65nm CMOS tech.
Power management by 5/2.5 and ON/OFF.
Under verification of PHY

1.0 V (+/- 5%)
1.0 V (for TxPLL/RxPLL)

Reference clock 100MHz (+/- 300ppm)

Power supply

Output voltage 1000 mVppd (nom.)
Output voltage

(Low power mode) 500mVppd (nom.)

Eye opening 0.75 UI (min.)
Rise/Fall mismatch 0.1UI (max.)

AC common mode voltage 100mVp-p (max.)
Minimum pulse 0.9UI (min.)

Output impedance 100 ohm (differential nom.)

De-emphasis ratio -6.0dB @ 5.0Gbps
-3.5dB @ 2.5Gbps (nom.)

E-idle peak voltage (AC) 20mVppd (max.)
E-idle voltage (DC) 5mVppd(max.)

8 16MHz
3.0dB (max.)
10dB @0.05-1.25GHz (min.)
8dB @1.25-2.5GHz (min.)
6dB @ 0.05-2.5GHz (min.)

Differential input voltage 100mVppd (nom.)

Inherent timing error (TJ) 0.34 UI (min.)

Inherent timing error (DJ) 0.24 UI (min.)
Minimum pulse width 0.6 UI (min.)

Min/max pulse voltage ratio 5 (max.)
8 16MHz
3.0dB (max.)

10dB @0.05-1.25GHz (min.)

8dB @1.25-2.5GHz (min.)
6dB @ 0.05-2.5GHz 8min.)

Input impedance (DC) 50 ohm (nom.)
AC common mode voltage 150mVp-p (max.)

Idle detector Threshold 120 mVppd (nom.)
Transmitter(TX)

Receiver(RX)

Target Spec of PCI-Express PHY

12 2007/6/28 MPSoC2007

Our Prototype Parallel embedded system

CPU
SH-4A

DDR-SDRAM
128MB

FLASH
Memory

PCI-E
Communicator

PCI-bus

Memory-bus

PCI-E link
(4-lane x 4)

4

(will be
mounted
on SiP)

CPU (controller)
M32R

ROM
or FLASH

SDRAM

Buffer
+ ControllerPHY Buffer
+ ControllerPHY

PCI-E
Gen2 Link
(2.5 5.0
Gbps/link)

Buffer
+ ControllerPHY Buffer
+ ControllerPHY

Buffer
+ ControllerPHY Buffer
+ ControllerPHY

Buffer
+ ControllerPHY Buffer
+ ControllerPHY

DMA
Controller

PCI Interface
to main CPU (SH-4)

PCI Interface
to main CPU (SH-4)Communicator

node node

node node

I/O

External devices

Prototyping of Communicator Chip
PCI-Exp Link IP

Hardware: PCIe Gen2 Link x 4 lane x 4
Packet Routing: Software/Hardware co-
design for prototyping

Switching by CPU (M32R) with DMA
Controller
CPU checks the header of in-coming packet,
and forward to other buffers for destinations.
CPU generate the PCI header to send the
data.

12-4-6

13 2007/6/28 MPSoC2007

Our project aims to investigate dependable technologies for a high-performance
parallel embedded computer platform with multi-core/multiprocessor systems.

To meet the needs for high-performance and dependable embedded systems.
Network Appliance, home multi-media server, car navigation system, severance, …

To make use of flexibility of multi-core/multi-processors, with respect to performance and
power, real-time.
Project research agenda

OpenMP for parallel programming environment
Power-aware runtime management
Reliable DSM and check pointing
Reliable and high-performance communication layer using multiple link
High-speed and low-power interconnect using PCI-Express Gen2 link

OpenMP will give a solution for parallel programming in multi-core embedded
processors.

Most current multi-core is not used as a “parallel system”, but just as a collection of
single processors.
I am interested in what features in OpenMP are required for parallel embedded
applications.

Summary

12-4-7

12-4-8

