
1

KTH/ESDlab/HT

6/15/2007 1

KTH/ESDlab/HT 6/15/2007 1

Novel Agent-based management for
Fault-Tolerance in Network-on-Chip

Prof. Hannu Tenhunen
Director, Turku Centre for Computer Science, Finland

Royal Institute of Technology, Sweden
Fudan University, Shanghai, China

hannu@ele.kth.se

MPSOC07

KTH/ESDlab/HT 6/15/2007 2

Outline
Autonomous NoC
Architecture for agent-based aNoC
Case study: replacing faulty cells
Conclusions

5-4-1

User
Rectangle

User
Rectangle

User
Rectangle

2

KTH/ESDlab/HT

6/15/2007 2

KTH/ESDlab/HT 6/15/2007 3

Motivation and approach: aNoC
Systems can have probalistic beaviour due
– Process induced random defects and failures
– Large scale parametric variations on device and circuit level due to nanoscale

operation
– Network based communication will induce ”internet” like behaviour to on-chip

trafic
– Software and application layers will see a variable resource pool for tasks in-hand

New engineering approach needed to handle the inherent uncertainty for building
unconditonally predictable and reliable/dependable systemts from undependable
subcomponents
– We propose to approach the problem by using a meet-in-the-middle strategy,

where we integrate system, technology, agent and CAD views.
– We try to provide a new design approach that enables us to implement efficiently

complex communication and computation system on future nanotechnology
platform. In this project we add a new layer above the traditional NoC approach,
which provides application functionality and communication resources.

– The purpose of this layer is to provide system level intelligence that is necessary
for implementing dynamically reconfigurable systems that function in a reliable
manner in non-robust technology basis. This has a clear impact to both
application and platform designers.

KTH/ESDlab/HT 6/15/2007 4

System Management: agents + NoC = aNoC
Key issues in system level decisions

– Modularity (regular structures, local
control and design)

– Concurrency (high performance, low
noise, local communication)

– Reconfigurability (platform life-time,
redesign cycles)

– Fault tolerancy (high yield,
chip/wafer level scalability)

– Scalability (design effort, architecture
and performance)

System control is heading from
synchronous systems towards
asynchronous ones (control and
communication)
Future systems need to be seen as
distributed systems

– An interconnected collection of
autonomous computers, processes, or
processors

An agent is anything that can be
viewed as perceiving its environment
through sensors and acting upon that
environment through actuators
Several different type of agents exist:

– Simple reflex agents
– Model based reflex agents
– Goal-based agents
– Utility-based agents
– Learning agents

Dynamic reconfigurability is needed to
adapt a system to changing resource
needs (reschedule operations) or to
replace faulty elements

5-4-2

User
Rectangle

User
Rectangle

User
Rectangle

3

KTH/ESDlab/HT

6/15/2007 3

KTH/ESDlab/HT 6/15/2007 5

Actual Design Phase vs. Self-Design
In order to optimise system
performance and guarantee Quality of
Service (QoS), I can’t do all decision
during actual design phase, some
decision need to be post-boned into
execution phase
We need build a systematic support for
self-design in design methodologies
The division of responsibilities
between the design phase and the
execution need to be done.
Tasks that are more critical can be
given more resources.

Actual design phase
Verification of dynamic components
and systems build upon them
Need for very strong modularity
(system/control, algorithms,
architectures), otherwise complexity
becomes too high

Self-design
Quite simple and homogenous
architectures
Self-design covers both application
and implementation level issues
Can be done e.g. by using intelligent
agents
What type of support need to be given
by components and environment
before execution phase
Self-verification?

KTH/ESDlab/HT 6/15/2007 6

From NoC to aNoC: Adding of a New Layer to
Implementation Platforms

Autonomy

System level intelligence
Agent/control layer

Current NoC approach
NoC platform
Functional SW

Communication

Functionality

5-4-3

User
Rectangle

User
Rectangle

User
Rectangle

4

KTH/ESDlab/HT

6/15/2007 4

KTH/ESDlab/HT 6/15/2007 7

Platform hierarchy

CELL CELL CELL CELL

CELL CELL CELL CELL

CELL CELL CELL CELL

CELL CELL CELL CELL

CELL CELL CELL CELL

CELL CELL CELL CELL

Cluster

Platform

Environm
ent

Sensor

Actuator

Percepts

Actions

FU

Agent

Cell

KTH/ESDlab/HT 6/15/2007 8

aNoC QoS
The QoS obtainable is dependent of the
variability. General goal is to obtain
reliable operations based on awareness of
the resource situation in the routers. We
need to introduce a measure of intelligence
in the routers consisting of

– awareness of the situation concerning the
types of variability;

– the ability to reason on the acquired
knowledge;

– local routing strategies achieving
dependable global results

Sensing devices establishing dynamic
awareness of the operational situation
in terms of computing load, power
availability and local resource quality.
Reasoning strategies leading to routing
strategies guaranteeing adaptive QoS
and dependable operations.
Efficient router design implementing
the cognitive elements and agents.

5-4-4

User
Rectangle

User
Rectangle

User
Rectangle

5

KTH/ESDlab/HT

6/15/2007 5

KTH/ESDlab/HT 6/15/2007 9

Agent hierarchy overview

Application agent
– Recognise application needs for system

reconfiguration (change of
functionality, performance
enhancement)

Platform agent
– Forms interface between application

and platform
Cluster agent

– Performs reconfiguration if necessary
(application needs, fault-tolerance)

Cell agent
– Routing, cell diagnostics

API

KTH/ESDlab/HT 6/15/2007 10

Agent Based Approach to Dynamic Systems (1)
Each agent can contain application
information, an autonomous controller
for decisions, performance analysis
logic, and reconfigurability functions.
The agents monitor their environment
and perform configuration actions
based on the information provided by
their “senses”.

Agent implementations
– HW vs. SW partiotioning
– Granularity

Multi-agent system
– Hierarchy, concurrency
– Asynchronous operations, agent

communication
– Cost-functions for self-design

An agent has two primary tasks
– Supervise its own operations
– Follow fault/error free operations

of the neighbour agents
» Monitoring of power

consumption
» In a similar manner

communication or response
time of neighbours can be
monitored and managed

» Adjusting amount of internal
processing capacity for
application and fault tolerance
purposes (optimisation)

Environm
ent

Sensor

Actuator

Percepts

Actions

?

Agent

5-4-5

User
Rectangle

User
Rectangle

User
Rectangle

6

KTH/ESDlab/HT

6/15/2007 6

KTH/ESDlab/HT 6/15/2007 11

Agent Based Approach to Dynamic Systems (2)
Dynamic implementation

– System change its implementations due to
variation in its performance needs and
location issues, detected faults/errors, or
system upgrades

– Requires reconfigurable or programmable
platform

– Homogenous processing elements and
interconnect solutions are preferable

Dynamic functionality
– System adapts/tracks its operations to

changed parameters in data content or
environment (e.g. adaptive algorithms)

In localised control strategy we utilise data-
driven type of approaches for the
application level synchronisation, while the
agents can be synchronised using normal
asynchronous handshakes¨.
To simplify agent functionalities we are
targeting to implement links between agents
using fully bi-directional asynchronous
handshaking.

Synchronisation or timing
– New configuration should operate

correctly after configuration (timing,
functionality)

– Synchronisation should be maintained
during and after reconfiguration

– In online operations, system
functionality is not allowed to be
disturbed due to reconfiguration
(blocking, redundancy)

Cost-Metrics
– Physical (measured) values: current,

voltage or power consumption
– Cut-size announce the number of

interconnected signals between to units
» Signals can be weighted

differently
– Functional and physical timing

» Performance
» Reaction-time or latency

– Processing capacity

KTH/ESDlab/HT 6/15/2007 12

Agent hierarchy

…

A P I N o C

A p p lic a tio n A g e n t
-re co g n ize s a p p l. n e e d s fo r sy ste m (fu nc tion a l ity , p e rfo rm a n ce)

P la tfo rm A g e n t (C lu s te r)
-in te rfa c e b e tw e e n p la tfo rm a n d a p p lica tio n

-d ef in e s c lu ste rs o n N o C m e sh a cc o rd in g to th e fun c tion a l n ee d s

C lu s te r A g e n ts
-(re)c o n f ig u re s ce lls (f u n ction a l n e e d s a n d fa u lt to le ran ce)

-c o m m un ica tion w ith p la tfo rm a g e n t

-re se ts a n d su p e rv ise s c lu ste r a re a

C e ll A g e n ts
-c o n s is ts o f s in g le p h ysic a l ce ll n o d e a nd its ro ute r

-c o m m un ica te s w ith ea ch o th e r a n d c lu s te r a g e n t

- p ro ce sse s d a ta a nd m a y se n d it to u p p e r lev e ls

C o n f ig u ra tio n ,
te stin g c e lls

C e ll
fa ilu re

C lu ste r
fa ilu re

- fo rm in g c lu s te r (a re a , p o s it ion ,
fu n c tio n , d ata I/O)
- te s t in g a nd d isc a rd in g c lu ste r

A p p lic at io n
fa ilu re

A p p lica tio n
sp e c if ica tion s

D A T A
O U T P U T

5-4-6

User
Rectangle

User
Rectangle

User
Rectangle

7

KTH/ESDlab/HT

6/15/2007 7

KTH/ESDlab/HT 6/15/2007 13

Replacing a faulty cell in FFT application

PU PU PU

PU PU PU

PU PU PU

PU PU PU

PU PU PU

PU PU PU

PU PU PU

PU PU PU

PU PU PU

PU PU PU

PU PU PU

PU PU PU

PU PU PU

PU PU PU

PU PU PU

PU PU PU

PU PU PU

PU PU PU

PU PU PU

PU PU PU

PU PU PU

PU PU PU

PU PU PU

PU PU PU

Platform agent

FFT-cluster

Failing cell Cluster agent Cluster extension cell

KTH/ESDlab/HT 6/15/2007 14

Unused cells as spare cells

Functioning cell

Spare cell

Functioning cell

Spare cell

Functioning cell

Spare cell

5-4-7

User
Rectangle

User
Rectangle

User
Rectangle

8

KTH/ESDlab/HT

6/15/2007 8

KTH/ESDlab/HT 6/15/2007 15

Latency requirements

1 UD

1 UD 3 UD

4 UD

UD=unit distance

KTH/ESDlab/HT 6/15/2007 16

Algorithm for updating latency requirements

WN:

W:

SW:

S:

ES:

E:

NE:

N:

WN:

W:

SW:

S:

ES:

E:

NE:

N:]2,,,,min[dndwdsdess FFFFNN −+−−−←

]2,,,,min[dedndwdsww FFFFNN −+−−−←

]2,,,,min[dsdedndwnn FFFFNN −+−−−←

]2,,,,min[dwdndwdsee FFFFNN −+−−−←

]2,2,,,[min
]2,2,,,[min

dedndsdwss
dwdndsdwww

FFFFNN

FFFFNN

−+−+−−←
−+−+−−←

]2,2,,,min[
]2,2,,,min[

dedsdndwnn
dedsdndwww

FFFFNN

FFFFNN

−+−+−−←
−+−+−−←

]2,2,,,min[
]2,2,,,min[

dwdsdndenn
dwdsdndeee

FFFFNN

FFFFNN

−+−+−−←
−+−+−−←

]2,2,,,[min
]2,2,,,[min

dwdndsdess
dwdndsdeee

FFFFNN

FFFFNN

−+−+−−←
−+−+−−←

Algorithm to update
latency requirements
when process is moved
to Other cell in
corresponding direction.
N=north..etc…Subscript
”n” stands
for new cell requirement
and ”f” for failured cell.
D=distance between new
and failed
cell= abs(xf -xn) + abs(yf
-yn)

5-4-8

User
Rectangle

User
Rectangle

User
Rectangle

9

KTH/ESDlab/HT

6/15/2007 9

KTH/ESDlab/HT 6/15/2007 17

Command flow in the reconfiguration phase with routing commands

1) From cell agent to cluster agent:
Cell failure
(contents)
-route(0,3) and wait for acknowledgement (cluster

agent
located 3 columns above)
-transfer data indicating cell failure
-unroute
2) From cluster agent to cell agent:
Reset cell
-route(0,-3) and wait for acknowledgement
-transfer data indicating resetting cell
-unroute
3) From cluster agent to platform agent:
More cells needed
-route(e.g. 2,0) and wait for acknowledgement (exact
address of cell to be contacted, depends on

configuration
of platform agent)
-transfer data indicating need of one cell
-unroute

4) From platform agent to cluster agent:
Take control over cell (3,1)
-route(-2,0) and wait for acknowledgement
-transfer data indicating the message
-unroute
5) From cluster agent to cell (3,1):
Cluster agent (2,4) controls you
-route(1,-3) and wait for acknowledgement
-transfer data indicating the message
- transfer data indicating cell configuration (same as
failed cell conf.)
-unroute
6) From cluster agent to platform agent:
Configuration Completed
-route(e.g. 2,0) and wait for acknowledgement (exact
address of cell to be contacted, depends on

configuration
of platform agent)
-transfer data indicating completed configuration
-unroute

KTH/ESDlab/HT 6/15/2007 18

Probality of reconfiguration success

Probability of reconfiguration
Success with latency
Requirements of [2..4] UDs
And 30% redundancy

5-4-9

User
Rectangle

User
Rectangle

User
Rectangle

10

KTH/ESDlab/HT

6/15/2007 10

KTH/ESDlab/HT 6/15/2007 19

Probability of reconfiguration success

Probability of reconfiguration
Success with latency
Requirements of [2..4] UDs
And 50% redundancy

KTH/ESDlab/HT 6/15/2007 20

Probability of reconfiguration success

Probability of reconfiguration
success of 8-neighbor topology with
latency requirements of [2..4] UDs
and 30% redundancy

5-4-10

User
Rectangle

User
Rectangle

User
Rectangle

11

KTH/ESDlab/HT

6/15/2007 11

KTH/ESDlab/HT 6/15/2007 21

Probability of reconfiguration success
Probability of reconfiguration success
of 8-neighbor topology with latency
requirements of [2..4] UDs and 50%
redundancy

KTH/ESDlab/HT 6/15/2007 22

Probability of reconfiguration success

Probability of reconfiguration
success of 8-neighbor topology
with latency requirements of
[1..4] UDs and 30%
redundancy

5-4-11

User
Rectangle

User
Rectangle

User
Rectangle

12

KTH/ESDlab/HT

6/15/2007 12

KTH/ESDlab/HT 6/15/2007 23

Probability of reconfiguration success
Probability of reconfiguration
success of 8-neighbor topology
with latency requirements of [1..4]
UDs and 50% redundancy

KTH/ESDlab/HT 6/15/2007 24

Summary
Key aspects for successful nano-regime NoC designs are build-in fault-tolerancy,
flexible use of resources, and easy scalability.
Key innovation to be solved

– Self-design. Extending design methodologies from actual design phase to self-design.
– Unlimited scalability.Solving yield and design methodology limitations to exploit highly

parallel and highly homogenous platforms.This needs work with algorithms, system
concepts and architectures (towards homogenous processing units)

– Design layers and abstractions. A new meta-design layer to provide system level
intelligence to ensure dynamic use of resources and reliable implementations in non-robust
technology basis.

More error-prone manufacturing due to finer scale technologies
– How to build robust, error-free and highly scalable systems, when basic building blocks

can be defective due to static and dynamic errors or failures.
– Fault-tolerance issues in all levels of abstraction

Noise, clocking and performance problems due to current system approaches towards
higher performance demand.

– This means avoiding of global interconnections
– It can mostly be eliminated by heavily increasing concurrency in the system and algorithm

levels

5-4-12

User
Rectangle

User
Rectangle

