Modular Performance Analysis of MPSoC

Lothar Thiele ETH Zurich, Switzerland

Outline

- Embedding of Performance Analysis
- Modular Performance Analysis
- Examples

Target Platforms

A sample HW Architecture

Target Platform Abstraction (1)

- Topology modeled by a graph
 - two node types:
 - execution and comm. resources
 - storage resources
- Execution resources
 - RISCs, DSPs, ...
- Communication resources
 - buses, switches, links, I/Os
- Storage resources
 - RAMs, HW FIFOs, ...

Application Model

Model-based design:

- Stream-oriented application model.

- The application is modeled as a network of processes
- Processes communicate via unidirectional channels.
- Kahn PN: Determinate (functional properties are independent of scheduling).

process

process

Channel I

Scalability at Specification Level

• *Separation* of instruction level parallelism (inside processes) and task-level parallelism.

7

- Use of *iterators* in
 - architecture specification
 - application specification
 - mapping specification

Application Functional Simulation

Mapping

Mapping = binding + scheduling

Mapping Optimization

Performance Estimation

Layers of abstraction:

- Simulation
 - Use for complete system validation

- Use for getting parameters of single components
- Trace-based performance analysis
- Analytic methods
 - Back-of-the-envelope
 - Modular performance analysis MPA: www.mpa.ethz.ch

Back-of-the-envelope Analysis

Swiss Federal Institute of Technology

17

Computer Engineering and Networks Laboratory

Modular Performance Analysis (MPA)

19

Computer Engineering and Networks Laboratory

MPA Performance Model

Swiss Federal Institute of Technology

Computer Engineering and Networks Laboratory

MPA (Modular Performance Analysis)

Computer Engineering and Networks Laboratory

Analysis and Design

Embedded System =

Computation + Resource Interaction

Analysis:

Infer system properties from subsystem properties.

Design:

Build a system from subsystems while meeting requirements.

Outline

- Embedding of Performance Analysis
- Modular Performance Analysis
- Examples

System-Level Performance Analysis

23

Memory Requirements?

Timing Properties?

Bottleneck?

Processor Speeds?

Bus Utilization?

Difficulties

25

Interference Communication
Interference Computation
Nondeterministic Environment

Difficulties

Interference Communication Complex Resource Availability
Interference Computation Complex Execution Demand
Nondeterministic Environment

What is necessary?

Abstract Models for Performance Analysis

Load Model (Environment)

Load Model - Examples

Service Model (Resources)

Processing Model (HW/SW)

Min-Plus Algebra

 $(\mathbb{R} \cup \{+\infty\}, \wedge, +)$: min-plus algebra

Min-plus convolution and de-convolution:

$$(f \underline{\otimes} g)(t) = \inf_{0 \le u \le t} \{ f(t - u) + g(u) \}$$
$$(f \overline{\otimes} g)(t) = \sup_{u \ge 0} \{ f(t + u) - g(u) \}$$

35

Computer Engineering and Networks Laboratory

Processing Model – Examples

Greedy Processing Component

Real-Time Calculus

$$\alpha'^{u} = \min\{(\alpha^{u} \otimes \beta^{u}) \otimes \beta^{l}, \beta^{u}\}$$

$$\alpha'^{l} = \min\{(\alpha^{l} \otimes \beta^{u}) \otimes \beta^{l}, \beta^{l}\}$$

$$\beta'^{u} = (\beta^{u} - \alpha^{l}) \overline{\otimes} 0$$

$$\beta'^{l} = (\beta^{l} - \alpha^{u}) \overline{\otimes} 0$$

Processing Model – Examples

Greedy Shaper Component

Behavioral Description

- Delays incoming events such that the output conforms to a given traffic specification.
- Guarantees that no events get delayed any longer than necessary.

Real-Time Calculus

$$\alpha'^{u} = \alpha^{u} \otimes \sigma$$

$$\alpha'^{u} = \alpha^{l} \otimes (\sigma \overline{\otimes} \sigma)$$

Computer Engineering and Networks Laboratory

System Composition

37

Scheduling and Arbitration

Embedding into other Frameworks

Applications

- Interface-Based Design of Embedded Systems
 - Check of Requirements at Composition-Time
 - Stepwise Refinement
 - Answering of design questions, e.g. resource dimensioning
- On-Line Load and Requirements Adaptation
- Extensions: activation schemes, processor state (cache), resource sharing (EDF, TDMA, Round Robin, Shapers), event types, blocking times.

Experience

- Network processor modeling
 - Detailed study of a network processor
 - Match between simulation and analytic methods
- Use in projects and case studies
 - − BridgeCoI

- Siemens

- Netmodule net
- Embedded Systems Institute

Integration into design space exploration

43

Outline

- Embedding of Performance Analysis
- Modular Performance Analysis
- Examples

Case Study

The Distributed Embedded System...

... and its Abstract Component Model

Adding Greedy Shapers

Delay *D*_{S6}: - 27% Buffer *B*_{S6}: - 20%

Input of Stream 3

Output of Stream 3

Does it Match Reality? (IBM)

Network Processing Device

RTC Toolbox

Matlab Command Line	Simulink
RTC To	oolbox
MPA Library	RTI Library
Min-Plus/Max-Plus	us Algebra Library
Matlab / Ja	va Interface
Java	API
Min-Plus/Max-Plu	s Algebra, Utilities
Efficient Curve	Representation

Computer Engineering **
and Networks Laboratory **

RTC Toolbox: Version 0.9 Released

	View Edit History Prin
Overview	Modular Performance Analysis and Real-Time Calculus
RTC Toolbox Overview Download	This webpage is currently under construction to serve in future as a central resource to the research on Modular Performance Analysis and Real-Time Calculus.
Release Notes	Until this webpage is completed, some more information on Modular Performance Analysis and Real-Time Calculus can
	ww.mpa.ethz.ch/rtctoolbox
	ww.mpa.ethz.ch/rtctoolbox

55

Acknowledgement

- Collaborators:
 - Ernesto Wandeler
 - Samarjit Chakraborty
 - Simon Künzli
 - Alexander Maxiaguine
 - Nikolay Stoimenov
 - Simon Perathoner
- Funding:
 - SNF, KTI, MEDEA+/SPEAC, ARTIST2 NoE, EU IP SHAPES

57

