
MPSoC 2007 1

RTOS-Centric Cosimulation for
MPSoCs

Hiroyuki Tomiyama

Graduate School of Information Science
Nagoya University
http://www.ertl.jp/~tomiyama/

MPSoC 2007 2

Team Members
Hiroaki Takada, Professor

Keynote speaker yesterday
Hiroyuki Tomiyama, Associate Professor
Shinya Honda, Assistant Professor
Past and Current Students

Takayuki Wakabayashi, Ph.D. (currently with Sony)
Shin-ichiro Chikada (currently with Sony)
Takashi Furukawa
Seiya Shibata

MPSoC 2007 3

Outline
ITRON RTOS and TOPPERS/JSP Kernel
RTOS-Centric Embedded System Design
Methodology
RTOS-Centric HW/SW Cosimulator
Case Studies

JPEG Decoder on a Single Processor
MPEG Encoder/Decoder on Multiprocessors

Summary

MPSoC 2007 4

What’s ITRON?
A standardized specification of RTOS kernel for small-
to mid-scale embedded systems.
Developed and standardized in Japan for >20 years

Prof. Takada has been playing the central role
ITRON is not a software product but a specification.

Defines a set of API functions (service calls)
Several profiles to cover different application domains

Standard Profile, Automotive Profile, etc.
Most popular RTOS specification in Japan

30 - 40% of embedded systems
especially in consumer electronics.

ITRON

MPSoC 2007 5

TOPPERS/JSP Kernel
A reference implementation of the Standard Profile of
ITRON 4.0

Initially, developed by Takada Laboratory
TOPPERS/JSP Kernel 1.0 released in November 2000

Currently, maintained by NPO TOPPERS Project
Incorporated in September 2003. (Chair: Prof. Takada)
http://www.toppers.jp/
>200 members (universities, companies, and individual volunteers)
The latest release is version 1.4.3 (June 2007)

Supported processors include
Motorola 68K Renesas SH1/3/4, H8, M32R
ARM7/9 MIPS3
Xilinx MicroBlaze TI TMS320C54x
Intel i386 NEC V850
Tensilica Xtensa and much more!

MPSoC 2007 6

TOPPERS/JSP Kernel (cont.)
Compact and highly portable
Free, open source software

Can be used for research, education, and even commercial
purposes.

Production quality
Actually, used in a number of commercial products
Examples include

Karaoke microphone “Do! Karaoke” by Matsushita Electric Industrial
Co., Ltd. (Panasonic), February 2003.
Ink-jet printers from Epson and Brother
Digital pianos from Roland
NC machines from Okuma

Released with a simulation model
Executable on Windows and Linux host computers

MPSoC 2007 7

Motivations
Embedded systems continuously grow in size and complexity.
Ex. Cellular phones

Phone, e-mail, digital still camera, video camera, TV phone, web browser,
TV, e-money, etc.
Multi-millions lines of code

Renesas SH-Mobile G1
Heterogeneous multiprocessors

SH4-DSP
(ITRON)

ARM
(Linux)

ARM
(ITRON)

SDRAM SDRAM
M
edia Bridge

System
 Bridge

PeripheralsMedia
Accelerators

WCDMA/GSM
Basebands

PeripheralsMedia
Accelerators

WCDMA/GSM
Basebands

PeripheralsMedia
Accelerators

WCDMA/GSM
Basebands

MPSoC 2007 8

Motivations (cont.)
RTOS plays an important role in such complex
embedded systems.

Task scheduling, inter-task communication and
synchronization, resource management, etc.

RTOS should be cosimulated with hardware and
application software in order to validate the overall
system functionality.

Such cosimulation should be done at a very early stage of
system design

MPSoC 2007 9

Traditional Cosimulation with RTOS
Very traditional cosimulation approach

RTOS on ISS + HDL simulator
Accurate timing
Slow simulation speed

Generic/simple RTOS model in
SystemC/SpecC

[Prof. Imai, MPSoC 2007]
[Desmet, DAC 2000]
[Gerstlauer, DATE 2003]
etc.

Fast simulation
Only for simulation

Need rewriting for synthesis/compilation
Support a very limited set of RTOS services

Actual RTOSs have more than 100 service calls
>50 service calls even in small kernels SystemC Simulation Kernel

H
W

(S

ystem
C

)

H
W

(S

ystem
C

)

H
W

(S

ystem
C

)

Host Computer

RTOS
Model

(SystemC)

Appl. SW

(S
ystem

C
/ C

)

Appl. SW

(S
ystem

C
/ C

)

Appl. SW

(S
ystem

C
/ C

)

H
W

 (H
D

L)

H
W

 (H
D

L)

H
W

 (H
D

L)

ISS

RTOS (C)

Appl. SW
 (C

)

Appl. SW
 (C

)

Appl. SW
 (C

)

HDL Simulator

Host Computer

Cosimulation Platform

MPSoC 2007 10

Our Cosimulator
Complete simulation model of a standard RTOS kernel, i.e.,
ITRON

No need to rewrite application software for implementation
Native, hence fast, execution of software

Easily replaceable with ISS
Cosimulation with hardware models in SystemC/C++/C

Fast cosimulation at different abstraction levels
Untimed functional
Timed functional
Bus-transaction level
Cycle-accurate

Cosimulation with hardware designs in HDL
Smooth synthesis

Support for multiprocessor systems

MPSoC 2007 11

Our Cosimulator (cont.)
Complete simulation model of ITRON RTOS
Native, hence fast, execution of software
Cosimulation with hardware models in SystemC/C++/C
Cosimulation with hardware designs in HDL
Support for multiprocessor systems

Complete
RTOS

Model (C)

Appl. SW
 (C

)

Appl. SW
 (C

)

Appl. SW
 (C

)

Cosimulation Platform

Host Computer

Complete
RTOS

Model (C)

Appl. SW
 (C

)

Appl. SW
 (C

)

Appl. SW
 (C

)

HDL
Simulator

H
W

 (H
D

L)

H
W

 (H
D

L)

H
W

 (H
D

L)

H
W

 (C
/C

++)

H
W

 (C
/C

++)

H
W

 (C
/C

++)

SystemC
Simulator

H
W

(S

ystem
C

)

H
W

(S

ystem
C

)

H
W

(S

ystem
C

)

HDL
Simulator

H
W

 (H
D

L)

H
W

 (H
D

L)

H
W

 (H
D

L)

MPSoC 2007 12

RTOS-Centric Design and Verification
Methodology

Using a complete simulation model of RTOS from a
very early stage of the system design

Application SW (C)

HW (RTL-HDL) Application SW (C)

Cosimulation
(RTL-HW & IS-SW)

Simulation （UT） Simulation （IS）

HW/SW Partitioning

HW (C) Application SW (C)

HW Design SW Tuning

Cosimulation
(UT-HW & UT-SW)

Cosimulation
(UT-HW & IS-SW)

Cosimulation
(RTL-HW & UT-SW)

RTOS Simulation
Model RTOS

MPSoC 2007 13

Specification and Simulation
Describe a system specification as a set of application tasks in C.

Use RTOS service calls for communication and synchronization between the
tasks.

Untimed simulation (UT)
Compile and link the applications with RTOS simulation model

Instruction-set level simulation (IS)
Find the performance-critical tasks (or parts of tasks) as candidates for hardware
implementation

Application SW (C)

HW (RTL-HDL) Application SW (C)

Cosimulation
(RTL-HW & IS-SW)

Simulation （UT） Simulation （IS）

HW/SW Partitioning

HW (C) Application SW (C)

HW Design SW Tuning

Cosimulation
(UT-HW & UT-SW)

Cosimulation
(UT-HW & IS-SW)

Cosimulation
(RTL-HW & UT-SW)

RTOS Simulation
Model RTOS

MPSoC 2007 14

Partitioning and Cosimulation
HW/SW partitioning and task mapping on multiprocessors
Untimed cosimulation (UT-HW & UT-SW)

Native execution of both SW and HW
Functional hardware model in C

Validate the functional correctness of the partitioning.

Application SW (C)

HW (RTL-HDL) Application SW (C)

Cosimulation
(RTL-HW & IS-SW)

Simulation （UT） Simulation （IS）

HW/SW Partitioning

HW (C) Application SW (C)

HW Design SW Tuning

Cosimulation
(UT-HW & UT-SW)

Cosimulation
(UT-HW & IS-SW)

Cosimulation
(RTL-HW & UT-SW)

RTOS Simulation
Model RTOS

MPSoC 2007 15

HW Design and Debugging
Behavioral synthesis or manual design.
Cosimulation (RTL-HW & UT-SW)

RTL debugging on an HDL simulator.
Native software execution on the host computer

The software serves as an interactive testbench.

Application SW (C)

HW (RTL-HDL) Application SW (C)

Cosimulation
(RTL-HW & IS-SW)

Simulation （UT） Simulation （IS）

HW/SW Partitioning

HW (C) Application SW (C)

HW Design SW Tuning

Cosimulation
(UT-HW & UT-SW)

Cosimulation
(UT-HW & IS-SW)

Cosimulation
(RTL-HW & UT-SW)

RTOS Simulation
Model RTOS

MPSoC 2007 16

Software Tuning
Optimize software to fully utilize memory hierarchy and
hardware architecture
Cosimulation (UT-HW & IS-SW)

Software execution on instruction-set simulator
Untimed hardware model

The RTL design may not be completed

Application SW (C)

HW (RTL-HDL) Application SW (C)

Cosimulation
(RTL-HW & IS-SW)

Simulation （UT） Simulation （IS）

HW/SW Partitioning

HW (C) Application SW (C)

HW Design SW Tuning

Cosimulation
(UT-HW & UT-SW)

Cosimulation
(UT-HW & IS-SW)

Cosimulation
(RTL-HW & UT-SW)

RTOS Simulation
Model RTOS

MPSoC 2007 17

Instruction/Cycle-Accurate Cosimulation
Traditional cosimulation

Hardware simulation on HDL simulator
Software execution on ISS

Evaluate the overall performance
Go back to HW/SW partitioning, HW design or SW tuning if performance
constraint is not satisfied

Application SW (C)

HW (RTL-HDL) Application SW (C)

Cosimulation
(RTL-HW & IS-SW)

Simulation （UT） Simulation （IS）

HW/SW Partitioning

HW (C) Application SW (C)

HW Design SW Tuning

Cosimulation
(UT-HW & UT-SW)

Cosimulation
(UT-HW & IS-SW)

Cosimulation
(RTL-HW & UT-SW)

RTOS Simulation
Model RTOS

MPSoC 2007 18

Key Features
Use of complete RTOS model from a very early stage of the
system design

Smooth implementation
No need to rewrite application software from specification to implementation
Legacy code can be easily reused

Flexible multilingual cosimulation
Efficient validation due to the single cosimulation platform at different
levels of abstraction

Drawbacks? => No!
Heavily dependent on a specific RTOS, i.e., ITRON

Most design teams in industry want to use the same RTOS as long as
possible because RTOS is the most fundamental platform
One design team uses only a few RTOSs

RTOS-dependent code is too low level
Model-driven design can be used on top of our design flow

MPSoC 2007 19

Target Multiprocessor Systems
RTOS runs on each processor
Static task allocation
Shared memory & local memory
Dedicated hardware

PE1

memory

tasks

RTOS

PE2

RTOS

memory

tasks

PE3

RTOS

memory

tasks

inter-processor interrupt

inter-processor interrupt inter-processor interrupt

shared
memory

dedicated
hardware

MPSoC 2007 20

Our Cosimulator

Complete
RTOS

Model (C)

Appl. SW
 (C

)

Appl. SW
 (C

)

Appl. SW
 (C

)

Cosimulation Platform

Host Computer

Complete
RTOS

Model (C)

Appl. SW
 (C

)

Appl. SW
 (C

)

Appl. SW
 (C

)

S
hared M

em
ory

(C
/C

++/S
ystem

C
) SystemC

Simulator

H
W

(S

ystem
C

)

H
W

(S

ystem
C

)

H
W

(S

ystem
C

)

HDL
Simulator

H
W

 (H
D

L)

H
W

 (H
D

L)

H
W

 (H
D

L)

Complete
RTOS

Model (C)

Appl. SW
 (C

)

Appl. SW
 (C

)

Appl. SW
 (C

)

PE1

memory

tasks

RTOS

PE1

memory

taskstasks

RTOS

PE2

RTOS

memory

tasks

PE2

RTOS

memory

taskstasks

PE3

RTOS

memory

tasks

PE3

RTOS

memory

taskstasks

inter-processor interrupt

inter-processor interrupt inter-processor interrupt

shared
memory

dedicated
hardware

MPSoC 2007 21

Task and Memory Management in
ITRON Standard Profile

Priority-based preemptive scheduling
Tasks are statically defined at design time

No dynamic loading at run time
Single memory space shared by all of application tasks
and RTOS

ITRON Kernel
Task A

Task B

Task C

Cross-
Compile & Link

Object Code for
Target CPU

MPSoC 2007 22

A Straightforward Approach to Native
Simulation

Difficult to debug the software without RTOS-specific
supports

From the viewpoint of a host computer, the object code is no
more than one application process.
Hard to observe the context of individual ITRON tasks.

ITRON Kernel Model
Task A

Task B

Task C

Native-
Compile & Link

Object Code for
Host Computer

MPSoC 2007 23

Our Approach: Multi-Threading
Multi-threaded implementation

Each application task is implemented as a thread.
The ITRON kernel is also a thread.

The kernel thread controls (e.g., start and suspend) the task threads by
means of inter-thread communication/synchronization.

From the host computer’s view, both the kernel and the tasks
are threads, and scheduled independently.

Easy to monitor the individual tasks with a normal C/C++ debugger.

R
TO

S
 K

er
ne

l

Ta
sk

 A

Ta
sk

 B

Ta
sk

 C

Host Computer (MS Windows)
H

D
L

S
im

ul
at

or

C
/C

++
 H

W
 M

od
el

process

process

thread H
D

L
S

im
ul

at
or

MPSoC 2007 24

Communication
Type types of communication

Read/write accesses based on memory mapped I/O
ITRON service calls must be used in application tasks

Ex. sil_reb_mem(addr)
Read 1-byte data from memory pointed by addr.

Interrupts
From hardware to processor
From processor to processor

Implemented with the COM technology
COM (Component Object Model)

Object-oriented binary-level communication technology for MS-
Windows applications

char *addr = 0x000f0000;
c = *addr;

MPSoC 2007 25

Read/Write Accesses
Two implementation
methods for simulation
RPC-based

Describe memory model
in hardware simulator
Flexible but slow

Shared memory-based
Create shared memory on
the host computer
Suitable for burst
accesses

COM
Object

Hardware
List

COM Object
Sa

COM Object
Sb

COM
Object

COM
Object

Address Map

0x00～0x0f 0x10～0x1f

Sa Sb

Processor ID Map

1 2

Ma Mb

COM
Object

Software
List

COM Object
Ma

COM Object
Mb

Device Manager

COM

COM I/F

Application
Software

RTOS Model

Software Simulators

COM I/F

Hardware Simulators

Shared
Memory
Object

Read/WriteRead/Write

Hardware
Access I/F

Lock
Object

Lock/UnlockLock/Unlock

MPSoC 2007 26

Read/Write Accesses
Two implementation
methods for simulation
RPC-based

Describe memory model
in hardware simulator
Flexible but slow

Shared memory-based
Create shared memory on
the host computer
Suitable for burst
accesses

COM
Object

Hardware
List

COM Object
Sa

COM Object
Sb

COM
Object

COM
Object

Address Map

0x00～0x0f 0x10～0x1f

Sa Sb

Processor ID Map

1 2

Ma Mb

COM
Object

Software
List

COM Object
Ma

COM Object
Mb

Device Manager

COM

COM I/F

Application
Software

RTOS Model

Software Simulators

COM I/F

Hardware Simulators

Shared
Memory
Object

Read/WriteRead/Write

Hardware
Access I/F

Lock
Object

Lock/UnlockLock/Unlock

MPSoC 2007 27

Interrupts
Two types of interrupts

from processor to processor
from hardware to processor

Both implemented with RPC

MPSoC 2007 28

HW/SW Synchronization
Actual RTOS needs clock ticks (interrupts) from a hardware timer

Clock hander in RTOS manages local clock on each processor
Similarly, our RTOS simulation model needs clock ticks from somewhere
outside
Two options in our cosimulator

Use a timer of MS-Windows
Software runs in real time on the host machine, so timing is not accurate at all

Describe a simulation model of hardware timer, e.g. in SystemC
Timing accuracy is clock tick level (typically, 100us - 1ms)

Application Tasks

μITRON Kernel Model

HAL (HW Abstraction Layer)

HAL-COM I/F

Application Tasks

μITRON Kernel Model

HAL (HW Abstraction Layer)

HAL-COM I/F

Application Tasks

μITRON Kernel Model

HAL (HW Abstraction Layer)

HAL-COM I/F

Application Tasks

μITRON Kernel Model

HAL (HW Abstraction Layer)

HAL-COM I/F

Device Manager

COM

Host Computer (MS Windows)

COM I/F

Hardware
Model

(C/C++)

COM I/F

HDL
Simulator

FLI/PLI

Application Tasks

μITRON Kernel Model

HAL (HW Abstraction Layer)

HAL-COM I/F

Application Tasks

μITRON Kernel Model

HAL (HW Abstraction Layer)

HAL-COM I/F

Timer
Read/Write

Interrupt

MPSoC 2007 29

Cosimulation with SystemC

BFM

MPSoC 2007 30

Covalidation with FPGA

P
o
inter

P
o
inter

P
o
inter

P
o
in

te
r

MPSoC 2007 31

Case Study 1: JPEG Decoder on a
Single Processor

JPEG Decoder
Four tasks: VLD, Dequantization, IDCT, and
YUV2RGB
Display: displays the decoded image on a
windows of a host computer during simulation.
Decode image size: 240x320

IDCT implemented in hardware
Design environment

Dual 2.4GHz-Xeon processors with hyper-
threading
Windows XP
HDL simulator: ModelSim
ISS: ARMulator

IDCT

YUV2RGB

Dequantization

VLD

Display

JPEG Image

Decoded Image

MPSoC 2007 32

Cosimulation Time
Cosimulation time was largely different depending on the
abstraction levels of both software and hardware.
In our methodology, comimulation can be performed at just
necessary level of abstraction.

Application SW (C)

HW (RTL-HDL) Application SW (C)

Cosimulation
(RTL-HW & IS-SW)

Simulation （UT） Simulation （IS）

HW/SW Partitioning

HW (C) Application SW (C)

HW Design SW Tuning

Cosimulation
(UT-HW & UT-SW)

Cosimulation
(UT-HW & IS-SW)

Cosimulation
(RTL-HW & UT-SW)

RTOS Simulation
Model RTOS

9msec 23.8sec

46sec

182sec 71sec

248sec

MPSoC 2007 33

Snapshot of Cosimulation
(RTL-HW & UT-SW)

HDL Simulator
(IDCT)

Profile Viewer
Main Console

C/C++ Model
(Image Output)

MPSoC 2007 34

MPEG
Encode

MPEG
Decode

VGA
MPEG
Data

RGB
Data

RGB
Data

DCT

Processor1 Processor2Local
Memory

VGA

Buffer

DCTMemory

Shared
Memory

Local
Memory

Application Software Application Software
C++

Verilog HDL
C++

File

Case Study 2: MPEG Encoder/Decoder
on Multiprocessors

Flow of MPEG
encoder/dec-
oder

System
organization

Encode
RTOS

Decode
RTOS

MPSoC 2007 35

Demo Video

DCT

Encoder Decoder

Shared Memory

VGA

MPSoC 2007 36

Summary
RTOC-Centric Design and Validation Methodology
RTOS-Centric Hardware/Software Cosimulator

Complete simulation model of ITRON RTOS
Native, hence fast, execution of software
Cosimulation with hardware designs in HDL
Cosimulation with hardware models in SystemC/C++/C
Covalidation with FPGA

Future Work
Improvement of timing accuracy
Support of other OS (e.g., Linux, VxWorks, OSEK, etc.)
Covalidation with software (CPU) on FPGA and HDL simulator on a host
computer.

The RTOS simulation model (with limited functionality for
cosimulation) is available as a part of the TOPPERS/JSP kernel
package from http://www.toppers.jp/

