MP-SoC June 2007

Formal modeling and a network centric
Real-Time Operating System
in less than 2K Bytes as a generic base
for MP-SoC and Process Oriented
Programming

www.OpenLicenseSociety.org
www.melexis.com

Unifying and systematic system development methologies
with trustworthy embedded components

28/06/2007 Open License Society 1 Oren Lioswas Soo i

Who 1s Open License Society?

e Privately funded R&D institute
Leuven (BE), Berdyansk (UA)

e Why: 70 % of all SE projects do not deliver
e Objectives
Systematic & Unified Systems Engineering Methodology
‘Interacting Entities’ paradigm at all levels:
e OpenComRTOS as runtime environment (formal developed)

Implies ‘Trustworthy Components’
e => Open License (source code + all design, test, docs)

e Focus:

Embedded Systems:
e Constraints driven development
e Real-time, distributed, hardware & software, ...

_ _ N
28/06/2007 Open License Society 2 mry

OrEN Licanss Soc

Some keywords

Unified semantics:

e For all “views” (from requirements to platform)
e Full behavior (at all levels)

¢ Interface definition (is more than syntax)

e “protocols” rather than messages

System’s grammar

e Defining a formalised language
Meta-modeling

¢ Raising the level of abstraction first

Interacting Entities

° Then define the architectural level=
e Entities and Interactions
e Applies to almost any system domain

28/06/2007 Open License Society 3 m..mmmc.m‘

Focus domain of
Systems2Trust:
Focus domain of OpenSpecs: formalised modeling

formalised R&S capturing

!
rchitecturd
L Model(s)

User
Applications

Unifying
Repository

(Formalised
Meta-Model)

Runtime environment
" supporting distributed
. concurrency and
Common Systems . comnmilor o
Grammar & E
_Semantics

; Unifying paradigm: {

I Interacting Entities | Platform with native support
[| for distributed (fine-grain)
concurrency and
Systems2Trust project communication

28/06/2007 Open License Society 4 oren Licawss Sociry

Embedded Systems: safety first

. Roof:
Climate: . Eai}r\u sensor | Seat:
* Control panel * Light contro . iti
- Flap-Control © Sunroof . . gigag’::é;“g‘ensor
- Blower motor - Interior Lighting... |[. Foiiiol panel
FANS..

Door:

* Window lifter
+ Central lockin

Steering wheel:
* Cruise control

* Switch detecfion * Wiper
* Mirror adjust + Turning lights
+ Radio
] + Telephone...
Front Module:
* Lights
- Instrument cluster: Chassis:
Engine: * Parktronic *Tire pressure
+ Sensors + Clock display monitoring
- Small motors... | |- _Switches...
28/06/2007 Open License Society 5 ms.x.cs.ﬁ?ﬁn

Runtime environment (software)

e Entities and their interactions are ‘linked’
with runtime components

e Ideally = proven and tested (=validated)

e Extra boundary conditions:
Real-time behaviour, performance, power consumption
Cost and size
Should be correct by design
Should be scalable by design
Should be safe and secure by design
Should support graceful degradation
Monitoring for confidence and post-fault analysis

28/06/2007 Open License Society 6 e m‘

Unifying paradigm (1): Interacting

.« .
andada~~

OpenComRTOS

28/06/2007 Open License Society 7

OrEN Licenss Sociry

Unifying paradigm (2): Scalable

Y\

. .
FfataakaabhbhEak] r\n+1 Fa%al

Scalability of Interacting Entities models

28/06/2007 Open License Society 8

ety

OPEN Licanss Socisry

OpenComRTOS: formally developed

- variable size packets

- widely distributed addressing
- dynamic protocol packets

- extensible API

- fixed size packets

- cluster adressing

- dynamic protocol packets
- APl emulation

OpenComRTOS

L1

- fixed size packet:

- tightly clustered adressing
- static protocol packets

- system packets

- schaduler

- routing and buffering

- runtime: monitor

OpenComRTOS

Lo

Packet structure

[headerto][patatos emgarlt |

— Lo [Datal 1 ! HeaderL2

L1

‘ L2

These are semantic
levels first of all:

What behavior to
expect?

28/06/2007 Open License Society

9 OrEN Licenss Socisry ‘

Generic Open-Comm-RTOS

OpenComRTOS
generic architecture

1

Communication Carrier

OpenComRTOS-LO
Application View

Receiving a
Packet

Sending a
Packet

Hardware Layer (I/O)

Based on (scalable) “packet switching” at all levels

Tasks (entities) and interactions decoupled

28/06/2007 Open License Society

10 mmucm:sncm‘

Some requirements

e Targets:
Single chip, tightly coupled: multi-core
Multi-chip, tightly coupled: parallel processors on board
Multi-boards, multi-rack: using backplane interconnects
Distributed: using LAN and WAN
Host node (e.g. to use host-OS services and legacy

e Application: mix of distributed control and dataflow

e Programming models:
“Interacting Entities”
“Virtual Single Processor”:
e transparent for topology
e Supporting heterogenous targets
Distributed real-time (preemptive, priority based, timer based)
Safe, secure => trustworthy beyond correctness
Small code size, low latency (=high performance)

28/06/2007 Open License Society 11 orEn Licens Soci -

Formal modeling
for developing OpenComRTOS

e Goal:
Develop Trustworthy distributed RTOS
e Follow OLS SE methodology
e Formal verification & analysis: formal modelling
Scalable distributed RTOS
Verify benefits and issues of using Formal Modeling

e Why do we need formal techniques?
How precise is the engineer’s brain?
How precise is the management’s brain?
How precise can we define requirements?
How precise can we define specifications?
How precise can we « write » software?
How precisely do we know all dependencies?
How sure can we be of the end-result?

28/06/2007 Open License Society 12 oren Licasz soci .

Can we trust our mind ?

e How many « F » did you find ?

FINISHED FILES ARE THE RE
SULT OF YEARS OF SCIENTIF-
IC STUDY COMBINED WITH
THE EXPERIENCE OF YEARS

Did you see the similarity with source code
(debugging) ?

28/06/2007 Open License Society 13 orEn Licens Soci m‘

Formal modeling tools

e Default mathematical approach:

Correctness by proof

e Labor and time intensive

e Needs specialists

e (Human) Error prone process
Tools needed

e State space is exponentially large

e Issues always in « hidden corners »

e Allow incremental process
Requirements:

e Support state machines

e Support concurrency and communication

e Low notational barrier

28/06/2007 Open License Society 14 oren Licasz soci .

Formal modeling tools:

selected options

e Investigated:
SPIN, B, CSP/FDR, TLA+/TLC

e Qutcome of process:

SPIN OK, initially preferred, good documentation, wide user
base, but very C-like style
CSP: hard notation, FDR not readily available
B: waiting for Event B, incremental approach and
compositionality very good
TLA+/TLC

e Based on Temporal Logic

e Mathematical notation, but standard

e Works for any domain (SW, HW, ...)

e (but not for large models)

28/06/2007 Open License Society 15 orEn Licens Soci -

Benefits of TLA+/TLC

e TLA+/TLC home page on
http://research.microsoft.com/users/lamport/tla/tla.html

e Initial models reflected “programming style”
That’s the way the mind works (after being conditioned ...)
> 28 successive models from 2 pages to 25 pages

e Initially very abstract, neglecting details
e All successive models were correct, why ?
- Iterative, incremental process!
- Takes 15 minutes from one model to the next
e Interplay between software architects and formal modeling engineer
- Architectural model polluted by programming concepts
- Abstraction from TLA helped to find these issues
- Result: much cleaner, safer and performant architecture

e TLA models do not prove software is correct (! ?)
TLC proves that Formal Models are correct

28/06/2007 Open License Society 16 oren Licasz soci .

Formally modeled

TypeInvariant == /\ ppool \in [Adr-> Packet \union {NoData}]
/\ PQ \in [FIFO : [Port -> Seq(Adr)],
WL : [Port -> Seq(Adr)]]

/\ chan \in [val: [HLink -> Packet \union {NoData}],

stt: [HLink -> {"free","busy"}]]
/\ TxQ \in [TxChan -> Seq(Packet)]

* /\ tstate \in [UTask ->{"running","ready",6"wait4anS","wait4anR"}]

67 Typelnvariant = A ppool € [Adr — Packet U {NoData}]
65 N PQ € [FIFO : [Part — Seq(Adr)],
70 WI 2 1Port — Seg{ Adr}]
A chan € | val: [HLink — Packet U {NoData}|, stt: [HLink — {“free”, “busy” }||
75 A TeQ € [TeChan — Seq(Packet)]
77 Atstaie € [UTask — {“runming”, “recdy”, “waitdans”, “waitdonR” })
28/06/2007 Open License Society 17 m-inl.msusssm:m‘

One result as example

Buffer

| IO

D:| WaitingList

Senders WaitingList
Packet J

Receivers

e Need for either FIFO Buffer or WaitingList
* Both (abstract) models are the same
* Natural language is imprecise, semantics are context driven

e Benefits:
e Infinite buffering until no more memory (for Packets)
e Overflow-free buffering

28/06/2007 Open License Society 18 mmucmisncm‘

All (typ1cal) K1US Enulcs: variations on a

4'1/\ Fat % Va¥

BUFFER LIST

CPRIO

GALLBAGK

OWNER MATCHING FILTER

MATCHING FILTER

COUNT

CALLBACK

MATCHING FILTER

© @
L L
s R

Generic Hub (N-N) PORT(N-N) SI=R

SYNCHRONISATION

wL
[0-11 Q

(1) COUNT[O-1]

EVENT(1-1)

SR

CeilingPRIO

MATCHING FILTER MATCHING FILTER

(1) COUNT(1-N)

wL
[0-1] O

SEMA(N-N)

WL
-1

RESOURCE(1-N) ~ S=R

sr=

»

BUFFER LISTINB] of
Data

MATCHING FILTER

Callback =
MOVE_DATA

Callback =
MOVE_DATA
MEMORY
POOL

MATCHING

FILTER(Tasks)
SI=R

s O ©®
e O Q

FIFO QUEUE (N-N) /=R MAILBOX (N-N)

SYNCHRONISATION + DATA TRANSFER

BUFFER LIST(NB)
(addr, size)

COUNT[1-NB]

CHANNEL (N-N)

SI=R

BUFFER ARRAY of LINKED LIST of
RESOURCE [NB] RESOURCE (i)

CeiingPRIO | [ceiingrrion |
OWNER(] | [ownery |
COUNTGHO-11_| [countdo-1)

E444

wL
[0-1] Q

MEMORY POOL.

O

MEMORY MAP s=

|

L

R
s=R

Ed

Generic hub:

=> define your own

entities and interactions

When buffering

[

With resource entities

Pending synchronisation ————]

Upon Synchronisation ——— |

Synchronisation —

= |

BUFFER LIST
CPRIO
OWNER
COUNT

CALLBACK

MATCHING FILTER

-=

X GenericHub(N—N)/

Waiting lists “senders/receivers”

28/06/2007

Open License Society

OPEN Licanss Socisry ‘

20

L1 entities

L1 Entity Semantics

Event Synchronisation on Boolean value. Waiting list on both sides.

Counting Semaphore | Synchronisation with counter allowing asynchronous signaling.

Port Synchronisation with exchange of a Packet.

FIFO queue Buffered communication of Packets. Synchronisation when
queue is full or empty.

Resource Event used to create a logical critical section. Resources have
an owner Task when locked

Memory Pool Linked list of memory blocks protected with a resource

Mailbox Synchronising entity with matching filter on Task ID.
Communication happens as side-effect.

Channel Asynchronous communication between Tasks with buffering
using memory pools. Communication as a side-effect.

28/06/2007 Open License Society 21 m-ms—smcm‘

any

node

entity can be mapped onto any

Virtual Single Processor
Application View Node Independent

e

10

[——
Memory Pool E

Packet Pool

Receiving a
Packel

OpenComRTOS-L1
Application View i

Node dependent B

%

OpenCon A T Y ? A J
Applicat | Hardware Layer (I/0)
Node de <] Communication Carrier >
OpenCom
Applicatig
Node dey

"l' * \[Hardware Layer (/0) |/
<] Communication Carrier >

S

T L I
Communication Carrier \I V m
oren Licanss socry

11

Maiboxi)

Example of Interaction diagram:
distribute

[oma | || ptiosen

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

Clean architecture gives small code

OpenComRTOS L1 code size figures (MLX16)
MP FULL SP SMALL
Lo L1 LO L1

LO Port 162 132

L1 Hub

shared 574 400
L1 Port 4 4
L1 Event 68 70
L1 Semaphore 54 54
L1 Resource 104 104
L1 FIFO 232 232
L1 Resource List 184 184
Total L1 services 1220 1048
Grand Total 3150 4532 996 2104

Smallest application: 1048 bytes program code and 198 bytes RAM (data)
(SP, 2 tasks with 2 Ports sending/receiving Packets in a loop, ANSI-C)
Number of instructions : 605 instructions for one loop (= 2 x context switches,
2 x LO_SendPacket_W, 2 x LO_ReceivePacket_W)

12

Semantic variations

Services variants Synchronising Behaviour

“Single-phase” services

_Nw Non Waiting: when the matching filter fails the Task returns with a
RC_Failed
W Waiting: when the matching filter fails the Task waits until such

events happens.

_WT Waiting with a time-out. Waiting is limited in time defined by the
time-out value.

“Two-phase” services

_Async Asynchronous: when the entity is compatible with it, the Task
continues independently of success or failure and will
resynchronize later on. This class of services is called “two-
phase” services.

28/06/2007 Open License Society 25 orEn Licens Soci -

Classes of services: API

LO_Start/Stop/Suspend/ResumeTask
LO_SetPriority

L1 SendTo/ReceiveFromHub
L1_Raise/TestForEvent_(N)W(T)_Async
L1_Signal/TestSemaphore_X
L1_Send/ReceivePacket_X L1_WaitForAnyPacket_ X
L1_Enqueue/DequeueFIFO_X
L1_Lock/UnlockResource_X
L1_Allocate/DeallocatePacket_X
L1_Get/ReleaseMemoryBlock_X

L1 MoveData_X
L1_SendMessageTo/ReceiveMessageFromMailbox_X
L1 SetEventTimerList

= . . '
user can create _hIS OV_IF\ service «Wd}
28/06/2007 Open License Society 26 e =

13

OpenComRTOS Visual Environment

ExlLo_sendreceive_Snodes.prj- Ope
Fe Edt vew Bud Hep
EREETT

B3| |2 Lo_sendreceive_3nodes prj - OpenComRTOS Visual Enviroment

PORE L @NN
oo Dagom |

]
ax |

Pool [LO_NODE_NUMBER_OF_TIMERS]: 2
BRVICES */

|sepciong | o) sapon

B Ik

#/start| (<] irbox - Microsoft .. | @) iooge - Moala ir.. | JciopencomeTos. |[#]io sendrecen 10 sercreceive 3., | Jprocesstracer <a. | [o] Mcrasoft PowerPoi... | B c:\OpenComRTOS. |C\OpenComRTOS. C:\OpenComRTCS. [« @ ¥ 200PM

What about real-time scheduling?

e von neumann machine is resource: need to share
time: => scheduling
Scheduling should be orthogonal to application logic
Timer based or priority based but preemptive
Priority inheritance mechanism needed, but akward to implement
(code is everywhere)
e Communication backbone is resource: need to
share medium
issues are latency, P2P bandwidth, buffering
=> packet switching
=> priorities inherited
e Architecture allows accepting Interrupts to be done
on different CPU than the one processing the Int.

&Nz

28/06/2007 Open License Society 28 Oren Licawss sociry

14

What about safety?

e Datastructures are passive entities and local

¢ No buffer overflow, automatic throttling

e Multiple kernel tasks on single node (e.g.

supervisor or back-up possible)
Software TMR possible, even across nodes

e (most) HW could provide more support

Memory corruption

Stack space protection

Data path bit error detection
Recovery points

Trustworthy communication backbone crucial => e.g.

SpaceWire (IEEE 1355)

28/06/2007 Open License Society 29

What about security?

e Mostly application level issue

e But:

Shuffling pointers hide packet content
Data in Packets can be protected/encrypted
Packet =memory block with identifier

e Hashing possible
Security supervisor tasks possible
Transactions can be secured

Matching filter can be enhanced for security
(authentification)

e Many topics for future research
L2 layer mostly dynamic (occam-Pi ?, Erlang?)
Goal: VM < 10 KB

28/06/2007 Open License Society 30

OrEN Licanss Soc =y

15

Results (ctd)

e Break-through results in well-known domain
100’s of RTOS with such support

15 years of exgerience, 3 generations of distributed RTOS design
(Virtuoso RTOS - Eonic Systems)

Typically CPU dependent, use of assembler and async operation

e Small, scalable, distributed and maintainable code
SP(LO): < 1000 machine instructions
MP(L1): < 2000 - 5000 machine instructions
Needs a few 100 bytes of data RAM
Fully in ANSI-C, MISRA-C compliant
Runs on MelexCM (16 bit) and Windows, ports underway (cell,
Sparc, uBlaze, ARM, PCI-Express) using porting kit
User can add his own application specific services

Scheduling aIPorithm could be improved to reduce worst-case
rescheduling [atency and blocking time

All RTOS Entities are variations of a generic « hub » object
e => |ess but faster code: 5 KBytes vs. 50 KBytes before
e RT performance @ 5 Mips, what needed 50 Mips before

28/06/2007 Open License Society 31 orEn Licens Soci -

Issues with TLA+/TLC

¢ Needs a few months to get the right
modeling style (especially concurrency)

e TLC declares critical section over all actions
In RTOS must be minimal
Requires good know-how of target processor
Why can’t FM not give the minimum critical sections?

e State Space is exponential
Millions of states for small application test model
TLA model not parametric
Might need hours to check
Tracing illegal states not always trivial
But not useable for checking numerical properties

28/06/2007 Open License Society 32 oren Licasz soci .

16

Key observations

e Successive iterations: evolutionary
e > 28 successive models from 2 pages to 25 pages
e Initially very abstract, neglecting details
e All successive models were correct, why ?
e Iterative, incremental process!
e Takes 15 minutes from one model to the next
e Interaction and abstraction
e Interplay between SW architects and formal modeling engineer
* Architectural model polluted by programming concepts
e Abstraction from TLA helped to find these issues
* Formalised thinking

e Much cleaner, safer and performant architecture

e Caveat: FM do not prove software is correct (! ?)
¢ Proves that Formal Models are correct

28/06/2007 Open License Society 33 e -

How it really works: teamwork

Requirements

L

Specifications

Validation Informal Models

Test and profiling

Implementation Models

Formal Models

28/06/2007 Open License Society 34 R — e

17

Summary

Open License Society’s approach is about
,formalised thinking'

The essence is the SE process
not the tools, but they help a lot
Applying occam’s rule: find the minimal solution

The benefits are “things being done better”
OpenComRTOS reinvents the RTOS
Smaller, safer, more performant applications
Very well suited for multi-core, networked systems
Defines a scalable programming methodology
Might migrate into the hardware

Try it out with the Win32 MP node version

Contact:
eric.verhulst@OpenLicenseSociety.org
28/06/2007 Open License Society 35 m..ms.ﬁ?m‘

18

