
1

28/06/2007 Open License Society 1

www.OpenLicenseSociety.org
www.melexis.com

Unifying and systematic system development methologies
with trustworthy embedded components

Eric.Verhulst@OpenLicenseSociety.org

Formal modeling and a network centric
Real-Time Operating System

in less than 2K Bytes as a generic base
for MP-SoC and Process Oriented

Programming

MP-SoC June 2007

28/06/2007 Open License Society 2

Who is Open License Society?

• Privately funded R&D institute
• Leuven (BE), Berdyansk (UA)

• Why: 70 % of all SE projects do not deliver

• Objectives
• Systematic & Unified Systems Engineering Methodology

• ‘Interacting Entities’ paradigm at all levels:

• OpenComRTOS as runtime environment (formal developed)

• Implies ‘Trustworthy Components’

• => Open License (source code + all design, test, …. docs)

• Focus:
• Embedded Systems:

• Constraints driven development

• Real-time, distributed, hardware & software, …

2

28/06/2007 Open License Society 3

Some keywords

• Unified semantics:
• For all “views” (from requirements to platform)

• Full behavior (at all levels)

• Interface definition (is more than syntax)

• “protocols” rather than messages

• System’s grammar
• Defining a formalised language

• Meta-modeling
• Raising the level of abstraction first

• Interacting Entities
• Then define the architectural level=

• Entities and Interactions

• Applies to almost any system domain

28/06/2007 Open License Society 4

3

28/06/2007 Open License Society 5

Embedded Systems: safety first

Roof:
• Rain sensor
• Light control
• Sun roof
• Interior Lighting...

Seat:
• Seat position
• Occupancy Sensor
• Control panel
• FANS…

Steering wheel:
• Cruise control
• Wiper
• Turning lights
• Radio
• Telephone...

Engine:
• Sensors
• Small motors...

Climate:
• Control panel
• Flap-Control
• Blower motor

Door:
• Window lifter
• Central locking
• Switch detection
• Mirror adjust

Instrument cluster:
• Parktronic
• Clock display
• Switches...

Front Module:
• Lights

Chassis:
•Tire pressure
monitoring

28/06/2007 Open License Society 6

Runtime environment (software)

• Entities and their interactions are ‘linked’
with runtime components

• Ideally = proven and tested (=validated)

• Extra boundary conditions:
• Real-time behaviour, performance, power consumption

• Cost and size

• Should be correct by design

• Should be scalable by design

• Should be safe and secure by design

• Should support graceful degradation

• Monitoring for confidence and post-fault analysis

4

28/06/2007 Open License Society 7

Unifying paradigm (1): Interacting

Entities

28/06/2007 Open License Society 8

Unifying paradigm (2): Scalable

Communication

5

28/06/2007 Open License Society 9

OpenComRTOS: formally developed

These are semantic

levels first of all:

What behavior to

expect?

28/06/2007 Open License Society 10

Generic Open-Comm-RTOS

Based on (scalable) “packet switching” at all levels

Tasks (entities) and interactions decoupled

6

28/06/2007 Open License Society 11

Some requirements

• Targets:
• Single chip, tightly coupled: multi-core

• Multi-chip, tightly coupled: parallel processors on board

• Multi-boards, multi-rack: using backplane interconnects

• Distributed: using LAN and WAN

• Host node (e.g. to use host-OS services and legacy

• Application: mix of distributed control and dataflow

• Programming models:
• “Interacting Entities”

• “Virtual Single Processor”:

• transparent for topology

• Supporting heterogenous targets

• Distributed real-time (preemptive, priority based, timer based)

• Safe, secure => trustworthy beyond correctness

• Small code size, low latency (=high performance)

28/06/2007 Open License Society 12

Formal modeling

for developing OpenComRTOS

• Goal:
• Develop Trustworthy distributed RTOS

• Follow OLS SE methodology

• Formal verification & analysis: formal modelling

• Scalable distributed RTOS

• Verify benefits and issues of using Formal Modeling

• Why do we need formal techniques?
• How precise is the engineer’s brain?

• How precise is the management’s brain?

• How precise can we define requirements?

• How precise can we define specifications?

• How precise can we « write » software?

• How precisely do we know all dependencies?

• How sure can we be of the end-result?

7

28/06/2007 Open License Society 13

Can we trust our mind ?

• How many « F » did you find ?

FINISHED FILES ARE THE RE

SULT OF YEARS OF SCIENTIF-

IC STUDY COMBINED WITH

THE EXPERIENCE OF YEARS

Did you see the similarity with source code
(debugging) ?

28/06/2007 Open License Society 14

Formal modeling tools

• Default mathematical approach:
• Correctness by proof

• Labor and time intensive

• Needs specialists

• (Human) Error prone process

• Tools needed

• State space is exponentially large

• Issues always in « hidden corners »

• Allow incremental process

• Requirements:

• Support state machines

• Support concurrency and communication

• Low notational barrier

8

28/06/2007 Open License Society 15

Formal modeling tools:

selected options
• Investigated:

• SPIN, B, CSP/FDR, TLA+/TLC

• Outcome of process:
• SPIN OK, initially preferred, good documentation, wide user

base, but very C-like style

• CSP: hard notation, FDR not readily available

• B: waiting for Event B, incremental approach and
compositionality very good

• TLA+/TLC

• Based on Temporal Logic

• Mathematical notation, but standard

• Works for any domain (SW, HW, …)

• (but not for large models)

28/06/2007 Open License Society 16

Benefits of TLA+/TLC

• TLA+/TLC home page on
http://research.microsoft.com/users/lamport/tla/tla.html

• Initial models reflected “programming style”
• That’s the way the mind works (after being conditioned …)

• > 28 successive models from 2 pages to 25 pages

• Initially very abstract, neglecting details

• All successive models were correct, why ?

– Iterative, incremental process!

– Takes 15 minutes from one model to the next

• Interplay between software architects and formal modeling engineer

– Architectural model polluted by programming concepts

– Abstraction from TLA helped to find these issues

– Result: much cleaner, safer and performant architecture

• TLA models do not prove software is correct (! ?)
• TLC proves that Formal Models are correct

9

28/06/2007 Open License Society 17

Formally modeled
TypeInvariant == /\ ppool \in [Adr-> Packet \union {NoData}]

/\ PQ \in [FIFO : [Port -> Seq(Adr)],

WL : [Port -> Seq(Adr)]]

/\ chan \in [val: [HLink -> Packet \union {NoData}],

stt: [HLink -> {"free","busy"}]]

/\ TxQ \in [TxChan -> Seq(Packet)]

* /\ tstate \in [UTask ->{"running","ready","wait4anS","wait4anR"}]

28/06/2007 Open License Society 18

One result as example

SenderTask

ReceiverTask

Port

Packet
WaitingList
Receivers

Buffer

WaitingList
Senders

• Need for either FIFO Buffer or WaitingList
• Both (abstract) models are the same

• Natural language is imprecise, semantics are context driven

• Benefits:
• Infinite buffering until no more memory (for Packets)

• Overflow-free buffering

10

28/06/2007 Open License Society 19

All (typical) RTOS Entities: variations on a

theme

28/06/2007 Open License Society 20

Generic hub: => define your own

entities and interactions

Waiting lists “senders/receivers”

Synchronisation

Upon Synchronisation

Pending synchronisation

With resource entities

When buffering

11

28/06/2007 Open License Society 21

L1 entities

Asynchronous communication between Tasks with buffering

using memory pools. Communication as a side-effect.

Channel

Synchronising entity with matching filter on Task ID.

Communication happens as side-effect.

Mailbox

Linked list of memory blocks protected with a resourceMemory Pool

Event used to create a logical critical section. Resources have

an owner Task when locked

Resource

Buffered communication of Packets. Synchronisation when

queue is full or empty.

FIFO queue

Synchronisation with exchange of a Packet.Port

Synchronisation with counter allowing asynchronous signaling.Counting Semaphore

Synchronisation on Boolean value. Waiting list on both sides.Event

SemanticsL1 Entity

28/06/2007 Open License Society 22

L1 application view:

any entity can be mapped onto any

node

12

28/06/2007 Open License Society 23

Example of Interaction diagram:

distributed mailbox

28/06/2007 Open License Society 24

Clean architecture gives small code

210499645323150Grand Total

10481220Total L1 services

184184L1 Resource List

232232L1 FIFO

104104L1 Resource

5454L1 Semaphore

7068L1 Event

44L1 Port

400574

L1 Hub

shared

132162L0 Port

L1L0L1L0

SP SMALLMP FULL

OpenComRTOS L1 code size figures (MLX16)

Smallest application: 1048 bytes program code and 198 bytes RAM (data)

(SP, 2 tasks with 2 Ports sending/receiving Packets in a loop, ANSI-C)

Number of instructions : 605 instructions for one loop (= 2 x context switches,

2 x L0_SendPacket_W, 2 x L0_ReceivePacket_W)

13

28/06/2007 Open License Society 25

Semantic variations

Asynchronous: when the entity is compatible with it, the Task

continues independently of success or failure and will

resynchronize later on. This class of services is called “two-

phase” services.

_Async

“Two-phase” services

Waiting with a time-out. Waiting is limited in time defined by the

time-out value.

_WT

Waiting: when the matching filter fails the Task waits until such

events happens.

_W

Non Waiting: when the matching filter fails the Task returns with a

RC_Failed

_NW

“Single-phase” services

Synchronising BehaviourServices variants

28/06/2007 Open License Society 26

Classes of services: API

• L0_Start/Stop/Suspend/ResumeTask

• L0_SetPriority

• L1_SendTo/ReceiveFromHub

• L1_Raise/TestForEvent_(N)W(T)_Async

• L1_Signal/TestSemaphore_X

• L1_Send/ReceivePacket_X L1_WaitForAnyPacket_X

• L1_Enqueue/DequeueFIFO_X

• L1_Lock/UnlockResource_X

• L1_Allocate/DeallocatePacket_X

• L1_Get/ReleaseMemoryBlock_X

• L1_MoveData_X

• L1_SendMessageTo/ReceiveMessageFromMailbox_X

• L1_SetEventTimerList

• … => user can create his own service!

14

28/06/2007 Open License Society 27

OpenComRTOS Visual Environment

(beta)

28/06/2007 Open License Society 28

What about real-time scheduling?

• von neumann machine is resource: need to share
time: => scheduling
• Scheduling should be orthogonal to application logic

• Timer based or priority based but preemptive

• Priority inheritance mechanism needed, but akward to implement
(code is everywhere)

• Communication backbone is resource: need to
share medium
• issues are latency, P2P bandwidth, buffering

• => packet switching

• => priorities inherited

• Architecture allows accepting Interrupts to be done
on different CPU than the one processing the Int.

15

28/06/2007 Open License Society 29

What about safety?

• Datastructures are passive entities and local

• No buffer overflow, automatic throttling

• Multiple kernel tasks on single node (e.g.
supervisor or back-up possible)
• Software TMR possible, even across nodes

• (most) HW could provide more support
• Memory corruption

• Stack space protection

• Data path bit error detection

• Recovery points

• Trustworthy communication backbone crucial => e.g.
SpaceWire (IEEE 1355)

28/06/2007 Open License Society 30

What about security?

• Mostly application level issue

• But:
• Shuffling pointers hide packet content

• Data in Packets can be protected/encrypted

• Packet =memory block with identifier

• Hashing possible

• Security supervisor tasks possible

• Transactions can be secured

• Matching filter can be enhanced for security
(authentification)

• Many topics for future research
• L2 layer mostly dynamic (occam-Pi ?, Erlang?)

• Goal: VM < 10 KB

16

28/06/2007 Open License Society 31

Results (ctd)
• Break-through results in well-known domain

• 100’s of RTOS with such support

• 15 years of experience, 3 generations of distributed RTOS design
(Virtuoso RTOS – Eonic Systems)

• Typically CPU dependent, use of assembler and async operation

• Small, scalable, distributed and maintainable code
• SP(L0): < 1000 machine instructions

• MP(L1): < 2000 - 5000 machine instructions

• Needs a few 100 bytes of data RAM

• Fully in ANSI-C, MISRA-C compliant

• Runs on MelexCM (16 bit) and Windows, ports underway (cell,
Sparc, uBlaze, ARM, PCI-Express) using porting kit

• User can add his own application specific services

• Scheduling algorithm could be improved to reduce worst-case
rescheduling latency and blocking time

• All RTOS Entities are variations of a generic « hub » object

• => less but faster code: 5 KBytes vs. 50 KBytes before

• RT performance @ 5 Mips, what needed 50 Mips before

28/06/2007 Open License Society 32

Issues with TLA+/TLC

• Needs a few months to get the right
modeling style (especially concurrency)

• TLC declares critical section over all actions
• In RTOS must be minimal

• Requires good know-how of target processor

• Why can’t FM not give the minimum critical sections?

• State Space is exponential
• Millions of states for small application test model

• TLA model not parametric

• Might need hours to check

• Tracing illegal states not always trivial

• But not useable for checking numerical properties

17

28/06/2007 Open License Society 33

Key observations

• Successive iterations: evolutionary
• > 28 successive models from 2 pages to 25 pages

• Initially very abstract, neglecting details

• All successive models were correct, why ?

• Iterative, incremental process!

• Takes 15 minutes from one model to the next

• Interaction and abstraction
• Interplay between SW architects and formal modeling engineer

• Architectural model polluted by programming concepts

• Abstraction from TLA helped to find these issues

• Formalised thinking

• Much cleaner, safer and performant architecture

• Caveat: FM do not prove software is correct (! ?)
• Proves that Formal Models are correct

28/06/2007 Open License Society 34

How it really works: teamwork

Requirements

Specifications

Test and profiling

Informal Models

Formal Models

Implementation Models

Concept
How ?

Formalise

!

Discuss,

think,

review

Validation

18

28/06/2007 Open License Society 35

Summary

• Open License Society’s approach is about
‚formalised thinking‘

• The essence is the SE process
• not the tools, but they help a lot

• Applying occam’s rule: find the minimal solution

• The benefits are “things being done better”
• OpenComRTOS reinvents the RTOS

• Smaller, safer, more performant applications

• Very well suited for multi-core, networked systems

• Defines a scalable programming methodology

• Might migrate into the hardware

• Try it out with the Win32 MP node version

• Contact:
• eric.verhulst@OpenLicenseSociety.org

