
MPSoC with multi Configurable Processors
and Design Environment

Jack, Kazutoshi Wakabayashi

EDA R&D center, Central Res. Labs. NEC corp.

and

chief architect, CWB business promotion, NEC System Technology, Ltd.

System IP Core Res. Labs, NEC Corp,

Visiting Professor, JAIST

URL:www.cyberworkbench.com

Email: wakaba@bl.jp.nec.com
June 28 (Th) 2008

2© NEC Corporation 2007K. Wakabayashi

Agenda

One feature of NEC’s ASSP (DAV,Mobile) is wide usage of
C-based synthesis and verification.
This impacts ASSP architecture and design flow these five years.
(We applied Behavior synthesis even for CPUs)

Keywords:
1. Multiple Configurable Processors

(custom CPU + custom DSP)
2. Dynamic Reconfigurable Processors

(flexible Hardware and controller)
3. C-based Synthesis and Verification
4. Reverse Trend : SW to HW

HW solution for RT operation, power efficiency

3© NEC Corporation 2007K. Wakabayashi

Global trend: Roll of SW(CPU) is increasing

SW: just controlling
HW blocks
uPD61030 （1998)

SW: DSP
function

For Low Power
Multi Custom Processors

MPEG2
Enc.

MPEG2
Enc.

Stream
Proc.

Stream
Proc.

MPEG2
Dec.

MPEG2
Dec.

MIPS
DSP

MIPS
DSP

Display
Proc.

Display
Proc.

Video
Encoder
Video

Encoder

CPU

DSP DSP

1998 2000 2004

VideoDACVideoDAC

Video EncoderVideo Encoder

GraphicsGraphicsMPEG2 A/V
Decoder

MPEG2 A/V
Decoder

CPUCPU
DescramblerDescrambler

TS DEMUXTS DEMUX

SDRAM IFSDRAM IFROM IFROM IF

Timer
UART
Timer
UART

SmartCardSmartCard

HighSpeedPortHighSpeedPort

2002 2007

Custom CPU,DSP

4© NEC Corporation 2007K. Wakabayashi

Global trend: MPSoC: Software-oriented system

.

SIF

V_Bus

MIPS:
4KE

MIPS:
4KE

Custom
CPU

V850E

Custom
CPU

0

2

4

6

8

10

12

14

1998年 １９９９年 2000年 ２００１年 ２００２年 2003年 2004年 2005年

EMMA1

EMMA２

EMMA2R

EMMA2RL １２

９

７

３Custom
DSP

EMMArchitectureEMMArchitecture RoadmapRoadmap

Custom
DSP

V850E General CPU: for embedded SW : a few

Custom CPU,DSP configurable Proc. : ~20
MPSoC

1999 2000 2001 2001 2003 2004 2005１

5© NEC Corporation 2007K. Wakabayashi

ローカル
メモリ

ＣＰＵ

アクセラ
レータ

ＤＭＡＣ

ＨＩ／Ｆ

ＩＮＰＵＴ

ＯＵＴＰＵＴ

Custom CPUs exist usually inside HW module

Main
CPU

Local
Mem

ＣＰＵ

acceleratorＤＭＡＣ

ＨＩ／Ｆ

ＩＮＰＵＴ

ＯＵＴＰＵＴ

Local
Mem.

ＣＰＵ

AcceleratorＤＭＡＣ

ＨＩ／Ｆ

ＩＮＰＵＴ

ＯＵＴＰＵＴ

Local
Mem

ＣＰＵ

Accele-
ratorＤＭＡＣ

ＨＩ／Ｆ

ＩＮＰＵＴ

ＯＵＴＰＵＴ

General ＣＰＵ
OS (RTOS)

Custom CPU

HW
module

of “custom CPU” is 20 or more, but they are not Main CPUs.
Main CPU is just a few… (not so-called MPSoC)
(though, custom CPU communicates with Main CPU)

6© NEC Corporation 2007K. Wakabayashi

Our ASSP architecture
A few General CPUs + Multi Custom Processors

+ HW modules (+ DRP)

.

General
CPU

General
CPU

General CPU

Custom
CPU

custom
DSP

custom
DSP

Custom
CPU

Custom
CPU

Custom
CPU

DRP

MEM

DRP:
Dynamic (every 1ns)
reconfigurable
(multi context)
FPGA or Programable
array

Custom CPU, DRP, HW modules are based on C-synthesis.
So, they can be replace into another.
e.g. C source for DRP can be synthesized into pure HW!!

CPU tasks are implemented in DRP (really happens often)!!

MIPS

V850

7© NEC Corporation 2007K. Wakabayashi

“All-in-C” : All Modules with C-based Synthesis

Control
Dominated

Datapath
circuit

HOST CPU
ARM,V850等
HOST CPU

ARM,V850等

DSP
SPX,TI等

DSP
SPX,TI等

LCDCLCDCROTATORROTATOR RESIZERRESIZER

DMAC
(APPLI)
DMAC

(APPLI)

HIFHIF

BRIDGE
(HOST-

DSP)

BRIDGE
(HOST-

DSP)

DMAC
(HOST)
DMAC
(HOST)

BRIDGE
(HOST-

APPLI)

BRIDGE
(HOST-

APPLI)

BRIDGE
(DSP-

APPLI)

BRIDGE
(DSP-

APPLI)

SPRAM

SDRAM

SRAM

CPU BUS

APPLI BUS

DSP BUS

GPIOGPIO

FLASH
ROM

8© NEC Corporation 2007K. Wakabayashi

1. Multi Custom Processors

Types of CPUs on our ASSP

General
CPU

Semi-
Custom

CPU

Full Custom
CPU / DSP

RTOS, C developing environment
(Debugger, Performance analysis, etc)
Middlewares,
Open for “SW engineer” or ASSP user

No OS, Assembler lang.
High Performance
Less Memory size
“HW engineer” or
ASSP supplier

General CPUs Instr. Set

+ Special Inst. Set

(Environment: same as above)

C
A

ssem
bler

C-synthesis

Custom CPU

ARM

MIPS

V850

CPUs for

-Tel com,

-Digital AV

(video, audio,
graphic, etc)

-Encryption

etc.

“screw&nail” processor

9© NEC Corporation 2007K. Wakabayashi

Merits of Custom CPU/DSP

1) HW control (sequencer)->SW control
more flexible, debuggable after chip fab.

2) Special Instruction Set : higher Performance
Low Power and low clock frequencies, memory save

- Real time function : No Cache, avoid bus collision
- HW-like Performance for special procedures
- Smaller size of Memory (Instruction & Data)
- Bit handing, Branch with bit
- read/write of I/O reg.
- Easy to design/ Modify (few weeks for design)

Requirements for our favorite custom CPU/DSP

10© NEC Corporation 2007K. Wakabayashi

Types of Additional Instruction Set

●Co-Processor
ＣＰＵ
core

Co-processor

CPU
core

Additonal
IS

Pros: Easy even with RTL based Design
Cons: no resource sharing among co-processors and core-CPU

slow data transfer CPU-core and Co-processor(e.g. memory mapped IO)

Pro： sharing registers, FUs with core CPU and Extended Instructions
Direct read of multi public register

-> higher performance
Cons: CPU core has to be changed

(difficult for RTL design, timing closure)

“C-base behavior synthesis” supports all types

●Complex Instruction into CPU core

ALU extension ：Easy, but very limited

(CPU core should be described in C, C-synthesis!)

Additional IS

11© NEC Corporation 2007K. Wakabayashi

Tool Flow for Custom CPUs

BehevioralBehevioral SynthesizerSynthesizer
CyberCyber

RTLRTL C++C++

CC
(BDL)(BDL)

C behavior of Custom CPUC behavior of Custom CPU

VerilogVerilog, VHDL, VHDL Cycle Accurate Cycle Accurate
C++ C++ Sim.ModelSim.Model
(ISS) (ISS)

Cycle Accurate Models Cycle Accurate Models
For other HW modulesFor other HW modules
+ General CPU models+ General CPU models

＋＋
HW-SW co-sim

Source Code Debugging

FPGA emu.

12© NEC Corporation 2007K. Wakabayashi

Configurable Processors Generation
RTL-based vs Behavioral-synthesis-based

Logic Synthesis based

Beh.Syn.

Processor
core A B C D

Adding Instructions : RTL Co-processors

Behavioral Synthesis based

Adding Instructions: Melted into Core

Processor
core

A B

C D

Smaller
Lower power

Special IS: Limited
Base Processor is not flexible

Special IS: less limited
Base Processor is flexible

Behavioral C

13© NEC Corporation 2007K. Wakabayashi

Adding IS’s include
Six Add Operations(32bit),

But No FU increases

Base I.S. : 81
Adding I.S. : 24
For Stream Processing
e.g.CRC, check-sum,

start-code check...

Base Processor : 33.9K Gate
After Adding IS： 42.6K Gate

only 8.7K(25%) increase

Kind

Bit width Before
adding

After
adding

Diff. Necessary
FUs in new IS

＞＞ 32 1 3 2 8
＞＞ 33 1 1 0 0
＋ 3 1 1 0 0
＋ 12 2 2 0 0
＋ 14 0 1 1 4
＋ 16 4 5 1 3
＋ 32 3 3 0 6
＜＝ 14 4 4 0 0
＜＝ 32 1 1 0 0
－ 3 1 1 0 0
－ 5 0 1 1 2
－ 32 2 2 0 0
＜＜ 32 1 1 0 0
＜＜ 33 1 1 0 0
＊ 8 1 1 0 0
＞ 16 0 2 2 2
＞ 32 1 1 0 0
＞＝ 32 1 1 0 0
＜ 16 0 2 2 2
＜ 32 1 1 0 0

Effects of Resource SharingEffects of Resource Sharing

Effects of FU sharing among
Base IS’s and Adding IS’s

Adding extra Instractions :
Not big area impact like co-processors

14© NEC Corporation 2007K. Wakabayashi

Summary for our custom CPU/DSP design

1) CPU is described in behavioral C,
and RTL is synthesized with our behavioral synthesizer (Cyber)
2) Additional Instruction set is also described in behavioral C

1)CPU basic Instractions and 2)additional Instructions share resources.

3) ISS of the CPU is also generated with Cyber, used for
entire SoC simulation including HW modules is constructed

4) C compiler or C-like structured assembler
(semi-custom CPU case, RTOS and development env. can be
used. Additional IS is handled as macro instruction.)

We are “C-maniac”
all modules are C-synthesis: this changes ASSP platform

15© NEC Corporation 2007K. Wakabayashi

What size of additional Instruction is appropriate?

Fine grain Instruction : Flexible, but low performance

Coarse grain Instruction: HW like performance, but low flexibility

1) Find bottleneck contains many general CPU instructions.

2) Hierarchical Instruction (for flexibility)
ex. Level 3 : function level instruction (DES encryption)

Level 2: SIMD, Protocol, combination (2bit shift&mask)
Level 1: Reg access, single ALU, testing, status checks

Bug, Spec. Change : Insted of ECO,
HW bugs in level 3, can be realized with level 2 or 1.
(use current chip until next ES)

16© NEC Corporation 2007K. Wakabayashi

tmp32A = FAST_LEN_TABLE;
tmp32A = memr32(tmp16a + tmp32A);
tmp16b = tmp32A >> 16;
tmp16a = tmp32A;
if (tmp16b != 0) {

tmp16b = VLD_GetBitReverse (tmp16b);
}
Len = tmp16a + tmp16b;

Only with Basic Instractions
which Original CPU core has

Len = VLD_CalcLenDist (tmp32A, TableData1, 1);

Huffman
InstructionCPU

Additional Instruction

Example of Additional Instruction

7 instructions → 1 instructions
7 cycles 2 cycles

☆Large procedure containing hundreds instructions,
might be synthesized as a HW accelerator.
(e.g. highly parallel=many FUs, low power, routability)

basic example:several codes -> one instruction
e.g. Huffman Decoding Instruction

17© NEC Corporation 2007K. Wakabayashi

Additional IS containing control flow:
special branch, loop instruction

Base Instructions

mov r2,0xfeffffff
and r3,r2
jz L1

New Instruction
For custom CPU

If(bit(r3,25)==0) goto L1

1 instruction
(1 cycle)

３ instruction
(3 cycle)

branch with bit calculation: common for DAV, mobile

Function: If 25th bit of R3 is 0, then goto L1

18© NEC Corporation 2007K. Wakabayashi

Result: “ Screw & snail” CPU

C(BDL) 2,267 Line
RTL(verilog) 12,985 Line
of IS 105
clock 108 MHz
Gate size 42.6 K Gate
Man Power (design) 3.0 MM

(C++ simulation) 3.5 MM

Basic：81,
Special：24

2.HW/SW co-design
SW and HW guys discussed on additional ISs

1. Flexible enough to follow spec changes
Effects of C-based design

3 Smaller circuits with resource sharing

First Trial
Next version took
Much less
Just inserting Specials

Less than 1% area -> dozens is fine,
but for 1000, 42KG is too large.

19© NEC Corporation 2007K. Wakabayashi

*1 Pentium3@1GHz, Testbench, debug included

~5%+

203X

7.6X

Rate

18KG

0.3K

9.2KL

RTL

19KG

61Kc/s

1.3KL

Behavior C

Gate Size

Simulation
(*1)

Code Size

Configurable
Processor

Comparison of Custom Processors with
C-Synthesis vs. Manual RTL

“Screw&nail” processor should be with C-synthesis,
since custom CPU design effort should be small enough!

20© NEC Corporation 2007K. Wakabayashi

Dynamic Program Loading for custom CPU and DRP

Custom
CPU Process A

Instructions

Data

Instruction/Data
Memory

Process B

Process C

Instruction/DATA memory is dynamically reloaded
upon request. Memory size can be reduced.
With C++ cycle accurate simulation, good size of memory should be
Determined.

Off chip memory
Loading with

DMA

DRP
Configurable

Memory

21© NEC Corporation 2007K. Wakabayashi

2. DRP Architecture (NECEL)

Fine-grained processor-based programmable array architecture

Architected for stream data processing, such as NW packet,
motion/still picture, and wireless data streams, etc.

STC: a simple sequencerSTC: a simple sequencer

Array of configurable
data memories
Array of configurable
data memories

State Transition Controller

PE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PE

MemMem MemMem MemMem MemMem

MemMem MemMem MemMem MemMem

MemMem

MemMem

MemMem

MemMem

MemMem

MemMem

MemMem

MemMem

MemMem

MemMem

MemMem

MemMem

MemMem

MemMem

MemMem

MemMem

DRP Tile (variable array size)

Array of byte-oriented
processing elements

Fully programmable
inter-PE wiring resources

Array of byte-oriented
processing elements

Fully programmable
inter-PE wiring resources

22© NEC Corporation 2007K. Wakabayashi

Mechanism of Dynamic Reconfiguration

#4
#3

#1
#2

Multi-context data-paths

状態遷移コントローラ

Context ID
Event sig.

=3

*
＋

p(i+1 , j+1)

j-1 line
pixel data

j line
pixel data

5

＋

＋

ー

pn(i , j)

p(i , j+1) p(i-1 , j+1)

p(i+1 , j)

p(i , j)
p(i-1 , j)

p(i+1 , j-1) p(i , j-1)

Add. Ctrl

+

+ *

+ -

#1 #2 #3 #4

State Transition Controller: STC

Reconfiguration done in
less than 1 ns

No additional cycle needed
for reconfiguration

Reconfiguration done in
less than 1 ns

No additional cycle needed
for reconfiguration

23© NEC Corporation 2007K. Wakabayashi

DRP’s roll in ASSP
1) Original Roll : programmable HW in ASSP (faster than DSP)

for DSP accelerator, Encryption, etc.
several rolls of different sized procedure
(Dynamic context , Dynamic program re-loading)

2) Proxy of Main CPU
controlling chip, software procedure instead of main CPUs

Main CPU is not powerful enough to perform several jobs
in terms of performance and size

-> several tasks for main CPU are transferred to DRP after chip fab.
(dynamic program re-loading: very fast for DRP)

DRP gives flexibility to ASSP
(CPU is not flexible enough in terms of performance)

24© NEC Corporation 2007K. Wakabayashi

DRP: Tool Driven Architecture!

IN

OUT

1

2

3

4

PE array

State Transition Controller

+

+

-

<

++

ALU
State Control
Stop/Pause/

Step/Run

Watch Reg/Mem
value look-up
with C variable

Download
configuration code

to each context

Test Data
Input/Output

Data-pathData-pathData-pathData-pathData-pathData-path

C descriptionC description

DRP CompilerDRP Compiler

Data-pathData-pathFSMFSM

ConstraintConstraint

On-chip debugger

• Architecture is derived from C-
synthesis “Cyber”

– “FSMD” directly mapped onto “STC
and PE array”

• C-source code Debugging
– Same as Pentium, Arm, MIPS!

25© NEC Corporation 2007K. Wakabayashi

DRP : Fully Integrated Design Environment

C source code State transition diagram

Mem/Reg/Port Access Info
showing Data Parallelism

Reports:
PE, Delay, Throughput,
Power Estimation

Synthesis
status

Variety of graphical feedbacks provided for designers
in order to support C source code optimization

Behavioral synthesizer

Place and route

On-chip debugger

IDE

C-source level debugging for HW is
finally supported just like IDE for CPU.
C-source level debugging for HW is
finally supported just like IDE for CPU.

Easy, effective,
and intuitive

DRP-1 board

26© NEC Corporation 2007K. Wakabayashi

3. “All-in-C” : all tools work for original C source code

Behavioral
Synthesizer
Behavioral
Synthesizer

SystemC/SpecC ANSI-C (BDL) Veirlog/VHDL

Verilog/VHDL

Behavioral description

C-RTL Equivalence
Prover

C-RTL Equivalence
Prover

Property/Assertion
Checker

Property/Assertion
Checker

Formal Verifier High-speed simulator

Bit-accurate
Behavioral Simulator

Bit-accurate
Behavioral Simulator

Cycle-accurate HW/SW
Co-simulator

Cycle-accurate HW/SW
Co-simulator

SystemC simulator

RT
FloorPlanner

RT
FloorPlanner

RT Power
Estimator

RT Power
Estimator

QoR
Analyzer
QoR

Analyzer

C

SystemC

SystemC

C++

CPU Bus I/F generatorCPU Bus I/F generatorBehavioral
IP library

Behavioral
IP library

Library
Characterizer

Library
Characterizer

Software

RTL IP

Cell Base ISSP DRPFPGA
Logic synthesis

& Back-end implementation

FPGA AcceleratorFPGA Accelerator
Control-flow-intensive

Data-dominant

Control-intensive

Testbench
Generator

Testbench
Generator

Cycle
Accurate

27© NEC Corporation 2007K. Wakabayashi

S1

S2

S3

M1

M2

Config.
30L

How to connect modules and CPUs?
CPU Bus and BUS I/F generator: ex. AMBA AHB,AXI

•Kind=AMBA_AHB
•Bus Master {M0, M1, M2}
•Bus Slave { S1,S2,S3,S4}
•Arbiter : {RoundRobin |

FixedPriority}

M0 M1

bus1

M2

S0

Sequential Combinational

M0 S0Address & control
HADDR[31:0]

Write data
HWDATA[31:0]

Read data
HRDATA[31:0]

Arbiter

Decoder

S1 S2 S3

Address

Generate

MUX
MUX

MUX

AMBA AHB(ARM)

RTL
12KL

C
4KL

Bus
Gen.

beh.
Syn.

behavior

Bus and I/F

28© NEC Corporation 2007K. Wakabayashi

Communication via BUS
BUS

filter_core

void read_stream(uint24 *p, ureg32 *idx)
{

*p = CBM_single_read(*idx) ;
*idx += 4 ;
return ;

}

void write_stream(uint24 v, ureg32 *idx)
{

CBM_single_write(*idx, v) ;
return ;

}

filter_core()
{

....
/* Line 0 (odd=0) */
for (j = 0; j < w_size; j++) {

read_stream(&val,&read_index);
line[0][j] = val ;

}
...

}

API for BUS I/F (for BUS I/F synthesis)

CWB generates bus I/Fs, a bus, and
an arbiter from our bus access APIs
and a bus definition.

defbus AMBA_AHB { /* on-chip bus protocol(AMBA AHB) */
width address = 32; /* address bus bit width */
width data = 32; /* data bus bit width */
module master ={pci2master, filter_core}; /* master UDL list for this bus */
module slave = {slave2sdram,filter_ctrl}; /* slave UDL list for this bus */
mode arbiter_rule =RoundRobin; /* arbitration rule */

} bus1; /* bus instance name */

module AMBA_AHB_MASTER { /* master spec. declaration */
mode burst = Enable; /* burst transfer capability */
mode data_transfer =Direct; /* UDL-I/F communication type */
mode clock = Enable; /* clock signal source declaration */
mode reset = Enable; /* reset signal source declaration */

} pci2master,filter_core; /* master instance name */

module AMBA_AHB_SLAVE {
mode burst = Enable; /* burst transfer capability */
map address = 0x00000000-0x00ffffff & 0xffffff00; /* address map & decoder mask */

} filter_ctrl; /* slave instance name */

bus definition (for BUS synthesis)

29© NEC Corporation 2007K. Wakabayashi

4. Reverse(?) trend with C-synthesis
Change SW control into Hardware control

Global trend: more SW,
but still we have minor trend of SW to HW solution

1) After several series of versions
- For Low Power
- For low cost, area, performance
Very complex control can be implemented as a HW

2) Hard Real Time Operation in HW rather than SW
For easiness of design and reliability of RT operation

30© NEC Corporation 2007K. Wakabayashi

SW control (more CPUs) More HW

H/W

MPU

Viterbi
Decoder

more Hardware for Power efficiency, Easy to design more Hardware for Power efficiency, Easy to design

Smaller
Area

1)Power(Area) Reduction
-Less custom DSP, SRAM
-> Pure Hardware

(less active power & leakages)

H/W

Viterbi
Decoder

NEC
DSP

size: M gates

2) SW control into HW control
- Waiting Procedure: S/W into H/W

=> Power Reduction
- Real time constrained S/W into H/W

=> Easy to design , Reliable

MPU

HW

S-DSP SRAM
2KW

S-DSP SRAM
2KW

S-DSP SRAM
2KW

S-DSP SRAM
2KW

C-synthesis is “must”

31© NEC Corporation 2007K. Wakabayashi

Summary

1) Introduced our ASSP approach,
a few main CPUs + multi custom CPUs + DRPs

2) C-based synthesis affects our architecture
(without C-based synthesis, 1) does not work well)
-tasks in main CPU, custom CPU, HW modules, DRP
could be exchangeable (that actually happens)

3) Our Global trend is “HW to SW” ,
but “SW to HW” trend is also realized with C-synthesis

☆Followings are all C-synthesis HW modules.
Designer can select realization with similar MonPower

- custom CPU : very flexible & programmable HW
- DRP : flexible and medium performance
- HW modules : hardwired high performance

32© NEC Corporation 2007K. Wakabayashi

Email: cwbinfo@mls.necst.nec.co.jp
URL:http://www.cyberworkbench.com/

