

Microelectronic System Design Research Group University Kaiserslautern www.eit.uni-kl.de/wehn

A Case Study in Reliability-Aware Design: A Resilient LDPC Decoder Architecture

Norbert Wehn

MPSoC 07 Awaji Island, Hyogo, Japan June 2007

This work was partially sponsored by the BMBF Initiative "Autonome Integrierte Systeme"

Motivation

- Extreme static & dynamic variations will result in unreliable components
- How to build reliable systems with "physical layer"?
- Resilient architectures tolerating variability and sporadic errors

Case Study: LDPC Decoder

- Emerging Killer Applications
 - Recognition, Mining, Synthesis (RMS)
 - Probabilistic belief propagation algorithms
- LDPC decoding representative for RMS algorithms
 - Hot topic in wireless communications (WiMAX, DVB-S2, WiFi, space applications)
 - High troughput, low latency requirements, large flexibility
- Communication and memory centric architecture
- Sources of unreliability
 - E.g. timing errors in communication network due to cross talk and voltage noise
 - E.g. soft errors in memories and communication network

Goal: Increase LDPC decoder reliability for a given system performance with minimum hardware overhead and throughput degradation

Algorithm/Architecture/EDC Codesign

- ALGORITHM: investigation w.r.t. fault-tolerance, error sensitivity e.g.
 - Single/two phase belief propagation, layered belief propagation algorithms
 - Sum-Product, 3-min, Min-Sum
- ARCHITECTURE: select robust architecture e.g.
 - Single-Phase, Two-Phase
 - Sign-magnitude, 2K
 - Critical signals
- SUBBLOCK: identify "reliability sensitivity" for each subblock
 - Select appropriate technique for each subblock to increase SYSTEM reliability

All steps are strongly interrelated!

UKL LDPC Decoder Implementations

LDPC Code	DVB-S2		WiMax (802.16e)	WiFi (802.11n)	U-S LDPC (UWB)
Codeword Size	64800		576-2304	648, 1296, 1944	9600
Code Rate	1/4-9/10		1/2-5/6	1/2-5/6	3/4
Parallelism	90	360	24-96	27-81	80
Quantization	6 bit				
Algorithm	3-Min			MinSum+MSF/Lay	
Max. Iterations	50-15		25-20	25-20	7
Architecture	1-phase	PN branch	Combined	1-phase	Layered
	Are	@ 528 MHz			
VNP	0.130	0.217	0.110	0.096	0
CNP	0.328	1.200	0.470	0.395	0.212
Network	0.046	0.270	0.206	0.065	0.027
Memory	3.357	4.428	0.551	0.467	0.265
Overall Area	3.86	6.11	1.33	1.02	0.50
Net Throughput	60-708 Mbps	0.23-2.68 Gbps	48-333 Mbps	54-281 Mbps	1.63 Gbps
Latency	270-82 µs	69-21 µs	6.0-5.7 µs	6.0-5.8 µs	4.4 µs
Max. Efficiency	183 Mbps / mm²	430 Mbps / mm ²	250 Mbps / mm²	274 Mbps / mm²	3.2 Gbps / mm²
Infobit/Cycle	0.15-1.77	0.58-6.70	0.12-0.83	0.14-0.70	3.08

Selected WiMax Standard as case study

Overhead ~20 %

- WiMAX LDPC code decoder, parallelism degree 96
- Synthesis with 65 nm standard cell library @ 400 MHz

Unit	LDPC Decoder	Resilient LDPC Decoder
Controller (including address and permutation ROM)	0.03	0.09
VFUs (without RAM)	0.11	0.11
CFUs	0.43	0.55
Permutation Networks	0.21	0.25
Sum RAM	0.21	0.25
Channel RAM	0.07	0.09
Message RAM	0.25	0.25
Total Area [mm²]	1.31	1.59

Conclusion

- Continous CMOS scaling
 - Resilient architectures become mandatory
- Increase of system reliability
 - All levels of abstraction have to be considered
 - Application has to be understood
- Algorithm/Architecture/EDC Codesign
 - Wirless communication is a good example