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Outline GSRC

* Parallel application outlook
* Heavy lifting in “simple” parallel applications
* Promising tool strategies and early evidence

* Challenges and opportunities

SoC specific opportnities and challenges?
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The Energy Behind Parallel
Revolution GSRC
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My Predictions GSRC

* Mass market parallel apps will focus on many-core
GPUs in the next three to four years
* NVIDIA GeForce, ATl Radon, Intel Larrabee
* “Simple” (vector) parallelism
* Dense matrix, single/multi-grids, stencils, etc.

* Even “simple” parallelism can be challenging
* Memory bandwidth limitation
* Portability and scalability
* Heterogeneity and data affinity
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DRAM Bandwidth Trends GSRC

Peak vs. Random-access Bandwidth, Desktop & Graphics DRAM
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* Random access BW 1.2% of peak for DDR3-1600, 0.8% for
GDDR4-1600 (and falling)

3D stacking and optical interconnects will unlikelv help.
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Dense Matrix Multiplication
Example (G80)
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Example: Convolution - Base Paralle
Code SRC

e Each parallel task calculates an output element

e Figure shows
e 1D convolution with K=5 kernel
e Calculation of 3 output elements

e Highly parallel but memory bandwidth inefficient
e Uses massive threading to tolerate memory latency
e Each input element loaded up to K times

Input elements in
main memory
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Example: convolution using on-chip cachi$ RC

* Qutput elements calculated from cache contents

* Each input element loaded only once

e Cache pressure - (K-1+N) input elements needed for N

output elements

e 7/3=2.3, 7"/3=54, 7'/ 3 =12
* For small caches, the benefit can be significantly reduced due
to the high-ratio of additional elements loaded.

Input elements first
loaded into cache
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Example: Streaming for Reduced
Cache Pressure GSRC

* Each input element is loaded into cache in turn
* Or a (n-1)D slice in nD convolution

* All threads consume that input element

* “loop skewing” needed to align the consumption of input
elements

* This stretches the effective size of the on-chip cache
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Many-core GPU Timing Results GSRC

o Time to compute a 3D k’-kernel convolution on 4 frames of a
720X560 video sequence

e All times are in milliseconds
o Timed on a Tesla $S1070 using one G280 GPU

SHARED 3D HYBRID
BASELINE MEMORY STREAMING FOURIER FOURIER

k (3.1) (3.2) (3.3) (3.4) (3.4)
5 16 11 4 24 15
7 44 15 8 34 17
9 96 48 16 39 20
11 180 77 27 44 23
13 295 45 74 24
15 454 75 56 26

I{1LLINOIS
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Multi-core CPU Timing Results GSRC

* Time to compute a 3D ki-kernel convolution on 4

frames of a 720X560 video sequence
e All times are in milliseconds

* Timed on a Dual-Socket Duo-Core 2.4 GHz Opteron
svstem. all four cores 11sed

SHARED 3D HYBRID
BASELINE MEMORY  STREAMING FOURIER FOURIER
k (3.1) (3.2) (3.3) (3.4) (3.4)
5 136 117 140 128 133
7 362 289 317 235 152
9 1018 597 614 208 213
1 1954 1065 1135 238 237
13 3590 1733 1771 267 271
: 15 6453 2676 2633 338 356
[LLIMNUio
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Application Example: Up-resolution
of Video GSRC

Nearest & bilinear interpolation:
+ Fast but low quality

Bicubic interpolation:
+ Higher quality but
computational intensive
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Implementation Overview GSRC

e Step 1: Find the coefficients of the shifted B-

Splines.
* Two single pole IIR filters along each dimension
* Implemented with recursion along scan lines

* Step 2: Use the coefficients to interpolate the
image
* FIR filter for bicubic interpolation implemented as a k=4 2D
convolution with (2+16+2)! input tiles with halos

* Streaming not required due to small 2D kernel, on-chip cache
works well as is.

* Step 3: DirectX displays from the GPU
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Upconversion Results GSRC

o Parallelize bicubic B-spline interpolation
o Interpolate QCIF (176x144) to nearly HDTV (1232x1008)
o Improved quality over typical bilinear interpolation

o Improved speed over typical CPU implementations
o Measured 350x speedup over un-optimized CPU code
o Estimated 50x speedup over optimized CPU code from inspection of CPU code

e Real-time!
:uos

I I (N

CPU Intel Pentium D 5 ms 1689 ms

GPU nVidia GeForce 1ms 4 ms
8800 GTX
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Application Example:
Depth-Image Based Rendering GSRC

* Three main steps:
* Depth propagation
* Color-based depth enhancement
* Rendering

UNIVERSITY OF ILLINDIS AT URBANA-CHAMPAIGN
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Color-based depth enhancement GSRC

Propagated depth image
at color view
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Depth - color bilateral filteri

1 - — — -
da= 5 > Coz ([Fa = Tal) - Goz (1L~ Il) - ds

-[-{i.:‘l_ = Z GTJE (|?:1 — FBU . (—;T.:r,f‘; {|I:l — IBD

Besy

da : depth value of point A.

Iy : color value of point A.
TA =|ua.,va]l : 2D coordinate of point A.
Sa @ set of A neighboring points.
— |2 .
Gy (|Z]) = exp 5 . Gaussian kernel.
20
Wa : normalizing term.

[§ ILLINOIS G, *G,,
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DIBR Visual Results QSRC

[§ [LLINOIS
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DIBR Time results GSRC
* Depth propagation.

* Not computationally intensive but hard to parallelize

* Each pixel in the depth view is be copied to the corresponding
pixel in a different color view.

* 3D-to-2D projection, many-to-one mapping.
* Atomic functions are used, current work to improve with sort-
scan and binning algorithms.

* Depth-color bilateral filter (DCBF)

* Computational expensive.
* Similar to 2D convolution. Similar parallelism techniques work

well
Intel Core 2 Duo E8400 3.0GHz 38 ms 1041 ms
GPU NVIDIA GeForce 9800 GT 24 ms 14 ms
-;"T Speedup 1.6Xx 74.4x
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Gluon - specification information
enables robust co-parallelization. qS RC
(lllinois)
* Developers specify pivotal information at function
boundaries
* Heap data object shapes and sizes
* Object access guarantees

* Some can be derived from global analyses but others can
be practically infeasible to extract from source code.

* Compilers leverage the information to
* Expose and transform parallelism
* Perform code and layout transformations for locality

UNIVERSITY OF ILLINDIS AT URBANA-CHAMPAIGN
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Gluon Parallelism Exposu
Example

struct data {
float x; float y; float z;

X

C

int *tpacf(int len, struct data *d) {
4. spec(d: r, (int)[len]));

int *hist = malloc(SZ*sizeof(int));

int cal_bin(st __spec(hist: (int)[SZ]);

st
1. __spec(*a: r/(data)[1]);
2. __spec(*b: r, (data)[1]);
3. __spec(ret_v: range(0,S2));

for (i=0; i < len; i++) {
for (j =0; ] <len; j++){

6. intbin = cal_bin(&d[i],&d[j]);

int bin = . *b*/

}return(bi 7. hist[bin] += 1;
}

{1 LLINOIS
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Program Dependence Graph Based
Application Performance Prediction GSRC
(Illinois)

Predicting the performance effect of compiler transformations.

Loop Region
W =8

— '
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¢ Baghsorkhi and Hwu,
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Automating Memory Coalescing
using Gluon and PDG

10

15

20

25

#define ASTZE 3000
#define TPB 32

void

kernel (float *a,

{

float *b

__annotation {L“__glabal__'ﬂhil“J;
__annotation (L"garray a 2 4 ASIZE ASIZE");
__annotation (L"garray b 2 4 ASIZE ASIZE");

int thi = threadIdx.x;

int bki = blocklIdx.x:

float £ = (fleoat) thi + bki;
int 1i;

I__annatation {L“Boundchk“J;I
1f (bki * TFB + thi >= ASIZE)

return;

for (i = 0; i < ASIZE; i++)

{

__annotation (L"loop i 0 ASIZE 1")j;

Dl (DR1 I PBTCOL) "ADI2E T 1] =

a[{hki*TPB+thiJ*ﬂSIZE + 1] * t;

1 #define ASTIR 3000
#datine TER 32

_glebal  void
5 kernel (float *a, float *b)
{
int thi = threadldx.x:
int bki = blockIdx,x:
float t = (float) thi + bki;
10 int 1

int i, Bnd, k;
_shared  float a_shared[TPR][TER]:
_shared  float b shared[TFR][TPR];

ao e g
paaeys

15
End = ASIZE & TPB == 0 7 ASTEE / TPR : (RSIZE/TPR)+1: :E
for (3= 0; 1 < End; i+ 20
ﬂ(‘ i 1< Endj 11t av
/* Coalesce loads ¥/
a0 __syncthreads();
for (k= 0; k € TPR: k)
{
if {[{*TPB + thi < ASTZR) &
( (bki*TER+k)*ASTZR + 1*TPR + thi < RSTTE * ASTIR))
25 a_shared[k:[\_hi: = a[(bk1*TER + k) *ASTZR + {*TER + thi];
__&yncthreads();
/* Conditions:
0 * TPR &k obey original end && !(early exit condition)
*f
for (1 =0y
(1< TPB) && (J*TPB+i < ASIZE) &k !(bki * TPB nthi »= MSTOR);
1+) 0
3 [ %3
b shared[thi][i] = a shared[thi][1] * ¢;] = H
1- = 3
. o
' =
0
[* Coalesce stores */ :
40 __syncthreads();
for (k = 0; k < TPB; ktt)
{
if ((1¥TPB + thi < ASTIR) &
{ (bkI¥TERAR)$RSTIE + 19128 + thi < AGTTR * AGTEE))
45 B[(LKi*TPR + k)*ASTEE + *TPB + thi] = b shared[k|[thi];
E‘..'nﬂl krazdeiis

- C

spe o]
pacssajeon)

SouolS
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Memory Layout Transformation
Lattice-Boltzmann Method Example (SRC

< y=0 > < Y= >

0 0 T

Array of Structure: [z][y][x][e]
Fz,y,x,e)=z*[Y|*IX|*[E| +y " [X| " [E[ +x " |[E| +e& | <

Structure of Array: [e][z][V][X]
F(z.y. x,e)=e™ |[Z] " Y| * X[+ z* [Y] * [X] +y * [X] + X
4X faster than AoS on GTX280

UNIVERSITY OF ILLINDIS AT URBANA-CHAMPAIGN
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The best layout is neither SoA
nor AoS GSRC

o Tiled Array of Structure, using lower bits in x and y indices, i.e. x,, and y,, as

lowest dimensions: [z][yy,][x;.]J[€]1[Y:][%:]

e F(z,y,Xx,€)=z*Y|/209*0|X]| /29 * |E| * 2¢* 2 +
Yoo CIXT/29% [E| * 29 24 X" |E] * 2% 24+ @ * 24" 2%y 2+ X

o 6.4X faster than AoS, 1.6X faster than SoA on GTX280:

o Better utilization of data by neighboring cells
- Thicic a eralahle lavniits came lavniit wnrke far verv larce nhiecrtc

< y=0 >4Y=1 >4Y=O > < y=1>< y=0>4y=1 > < y=0>

UNIVERSITY OF ILLINDIS AT URBANA-CHAMPAIGN
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Summary GSRC

* Tools must understand and manage data accesses
* Partnership between developers and tools
* Key to “good” parallelism
* Must balance between developer specification and program analysis
* Key to portability and productivity

 “Simple” many-core programming tools within reach
* Memory bandwidth optimizations
* Parallel execution granularity adjustments
* Well-known algorithm changes
* Heterogeneous computing mapping and data transfers
* Haves and Have-Nots of many-core computing

* http://www.parallel.illinois.edu/
* Courses, seminars, publications, tools,
e UPCRC. CUDA Center of Excellence. IACAT. ...

IVERSITY OF ILLINGIS AT URBANA-CHAMPAIGN
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http://www.parallel.illinois.edu/

Current Challenges GSRC

* Execution Models
* Currently single kernel execution
* Moving to multiple kernel steaming

* Irregular Algorithms and Data Structures

* Data layout and tiling transformations for sparse
matrices and spatial data structures need to be
developed and automated

* Graph algorithms lack conceptual foundation for locality

* Usability
* Tools and interfaces may be still too tedious and
confusing for application developers

UNIVERSITY OF ILLINDIS AT URBANA-CHAMPAIGN
TH

29 MPSoc, August 3, 2009




GSRC

Thank you! Any questions?

UNIVERSITY OF ILLINDIS AT URBANA-CHAMPAIGN
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Applications Entry Timeframes GSRC

App developers want at A {

least 3X-5X for user PPs SI°ry
_ point (2011)

perceived value-add

50 GF 100 GF 200 GF 400 GF

2-core 4-core 8-core 16-core
e e Multi-core
G380
G380 G280 Larrabee
_Many-core
16-cores 32-cores | 64-cores 128-cores

500 GF 1TF 2TF 4 TF

Time
Apps entry 24-month

IL point (2008) generations
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FIR implementation GSRC

Linegsitistepislianiriold Baske

k =x-0x/RO*R
g[X] = c[x-1]wO[K] + c[x]w1[Kk] + c[x+1]w2[K] + c[x+2]w3K]
{1 LLINOIS
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Depth propagation

GSRC

* Propagate depth information from the depth camera to each color camera.

* 2D point to 3D ray mapping relation:

F={ Sk tge fraigs || om0z, ]TZPf
*Warping equation: (L. McMillan, 1997)

T, =Py ('5()' (G, — Cy) + PT:ET)
* Compute new depth values:

da(Ty) = ‘cﬁ‘ _ ‘020{ +OX

A form of 2D “histogram”
challenging for GPUs

™

NS sNN

i - C_;d
[LLINOIS |/,
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Notation:

{5,t, W} = local view coordinates.
{37, E} = global coordinates.

f = focal length of the camera.

P = point-to-ray projection matrix.
7 = 3D ray.

Z = 2D coordinate of a pixel.

)__(: = 3D projection of .

C = camera center.
Subscript r = reference view.

Subscript d = desired view.

a.(7,) = [C7X|

MPSoc, August 3, 2009




Ilinois Vision Video (ViVid) GSRC
Framework

o Constructed by vision experts with parallel programming expertise
e For video analysis, enhancement, and synthesis apps

e Python module bindings for seamless CPU/GPU deployment
e MPEG2 Video Decoder and file 1/0- C++ (through OpenCV)
e 2D Convolution - C++, Python, CUDA
e 3D Convolution - C++, Python, CUDA
e 2D Fourier Transform - C++, Python, CUDA
e 3D Fourier Transform - C++, Python, CUDA
e Optical Flow Computation - C++ (through OpenCV)
e Motion Feature Extraction - C++, Python, CUDA
o Pairwise distance between 2 collections of vectors - C++, Python, CUDA

e Domain knowledge capture for optimization and auto-tuning

M. Dikman, et al, University of lllinois, Urbana-Champaign

1867 UNIVERSITY OF ILLINDIS AT URBANA-CHAMPAIGN
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GMAC Heterogeneous Computing
Runtime (UPC/lllinois) GSRC

* Software-Based Unified CPU/GPU Address Space
* Same address/pointer used by CPU and GPU
* No explicit data transfers
* Data reside mainly in GPU memory
* Close to compute power
* QOccasional CPU access for legacy libraries and |/0
* Customizable automatic data transfers:
* Transfer everything (safe mode)
* Transfer dirty data before kernel execution
* Transfer data as being produced (default)

* Multi-process / Multi-thread support
* CUDA compatible, Linux alpha version available
soon.

UNIVERSITY OF ILLINDIS AT URBANA-CHAMPAIGN
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