

Many-core Computing Can compilers and tools do the heavy lifting?

Wen-mei Hwu

FCRP GSRC, Illinois UPCRC, Illinois CUDA CoE, IACAT, IMPACT University of Illinois, Urbana-Champaign

- Parallel application outlook
- Heavy lifting in "simple" parallel applications
- Promising tool strategies and early evidence
- Challenges and opportunities

SoC specific opportnities and challenges?

The Energy Behind Parallel Revolution

 ILLINOIS

 INIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

MPSoc, August 3, 2009

My Predictions

- Mass market parallel apps will focus on many-core GPUs in the next three to four years
 - NVIDIA GeForce, ATI Radon, Intel Larrabee
 - "Simple" (vector) parallelism
 - Dense matrix, single/multi-grids, stencils, etc.
- Even "simple" parallelism can be challenging
 - Memory bandwidth limitation
 - Portability and scalability
 - Heterogeneity and data affinity

DRAM Bandwidth Trends

GS

- Random access BW 1.2% of peak for DDR3-1600, 0.8% for GDDR4-1600 (and falling)
- 3D stacking and optical interconnects will unlikely help. 5 MPSoc, August 3, 2009 NIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGI

Dense Matrix Multiplication Example (G80)

Example: Convolution - Base Parallel

- Each parallel task calculates an output element
- Figure shows
 - 1D convolution with K=5 kernel
 - Calculation of 3 output elements
- Highly parallel but memory bandwidth inefficient
 - Uses massive threading to tolerate memory latency
 - Each input element loaded up to K times

Example: convolution using on-chip cachings RC

- Output elements calculated from cache contents
 - Each input element loaded only once
 - Cache pressure (K-1+N) input elements needed for N output elements
 - 7/3 = 2.3, $7^2/3^2 = 5.4$, $7^3/3^3 = 12$
 - For small caches, the benefit can be significantly reduced due to the high-ratio of additional elements loaded.

Example: Streaming for Reduced Cache Pressure

- Each input element is loaded into cache in turn
 - Or a (n-1)D slice in nD convolution
- All threads consume that input element
 - "loop skewing" needed to align the consumption of input elements
 - This stretches the effective size of the on-chip cache

Many-core GPU Timing Results GSRC

- Time to compute a 3D k³-kernel convolution on 4 frames of a 720X560 video sequence
 - All times are in milliseconds
 - Timed on a Tesla S1070 using one G280 GPU

		Shared		3D	Hybrid
	BASELINE	Memory	Streaming	Fourier	Fourier
k	(3.1)	(3.2)	(3.3)	(3.4)	(3.4)
5	16	11	4	24	15
7	44	15	8	34	17
9	96	48	16	39	20
11	180	77	27	44	23
13	295		45	74	24
15	454		75	56	26

Multi-core CPU Timing Results GSRC

- Time to compute a 3D k³-kernel convolution on 4 frames of a 720X560 video sequence
 - All times are in milliseconds
 - Timed on a Dual-Socket Duo-Core 2.4 GHz Opteron system. all four cores used

		Shared		3D	Hybrid	
	BASELINE	Memory	STREAMING	Fourier	Fourier	
k	(3.1)	(3.2)	(3.3)	(3.4)	(3.4)	
5	136	117	140	128	133	
7	362	289	317	235	152	
9	1018	597	614	208	213	
11	1954	1065	1135	238	237	
13	3590	1733	1771	267	271	
15	6453	2676	2633	338	356	
<u>Inu</u>	10					at 2 2000
DIS AT URBANA-CH	AMPAIGN		11		MF30C, AUQU	ST 3. 2009

Application Example: Up-resolution of Video

Nearest & bilinear interpolation: + Fast but low quality

Bicubic interpolation: + Higher quality but computational intensive <u>ILLINOIS</u>

Implementation Overview

- Step 1: Find the coefficients of the shifted B-Splines.
 - Two single pole IIR filters along each dimension
 - Implemented with recursion along scan lines
- Step 2: Use the coefficients to interpolate the image
 - FIR filter for bicubic interpolation implemented as a k=4 2D convolution with (2+16+2)² input tiles with halos
 - Streaming not required due to small 2D kernel, on-chip cache works well as is.
- Step 3: DirectX displays from the GPU

Upconversion Results

- Parallelize bicubic B-spline interpolation
 - Interpolate QCIF (176x144) to nearly HDTV (1232x1008)
 - Improved quality over typical bilinear interpolation
 - Improved speed over typical CPU implementations
 - Measured 350x speedup over un-optimized CPU code
 - Estimated 50x speedup over optimized CPU code from inspection of CPU code
 - Real-time!

	Hardware	IIR	FIR
CPU	Intel Pentium D	5 ms	1689 ms
GPU	nVidia GeForce 8800 GTX	1 ms	4 ms
ILLINOIS UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN			

Application Example: Depth-Image Based Rendering

GSRC

- Three main steps:
 - Depth propagation
 - Color-based depth enhancement
 - Rendering

1867

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Depth - color bilateral filteri $d_A = \frac{1}{W_A} \sum_{B \in S_A} G_{\sigma_s^2} \left(\left| \vec{x}_A - \vec{x}_B \right| \right) \cdot G_{\sigma_r^2} \left(\left| I_A - I_B \right| \right) \cdot d_B$ $W_{A} = \sum G_{\sigma_{s}^{2}} (|\vec{x}_{A} - \vec{x}_{B}|) \cdot G_{\sigma_{r}^{2}} (|I_{A} - I_{B}|)$ $B \in S_A$ $G_{\sigma_a^2}(I_A - I_B)$ d_A : depth value of point A. I_A : color value of point A. $\vec{x}_A = [u_A, v_A]$: 2D coordinate of point A. S_A : set of A neighboring points. $G_{\sigma^2}(x_A - x_B)$ $G_{\sigma}(|\vec{x}|) = exp\left(\frac{-|\vec{x}|^2}{2\sigma^2}\right)$: Gaussian kernel. W_A : normalizing term.

 $G_{\sigma_{\tau}} * G_{\sigma_{\tau}}$ MPSoc, August 3, 2009

DIBR Visual Results

DIBR Time results

• Depth propagation.

- Not computationally intensive but hard to parallelize
- Each pixel in the depth view is be copied to the corresponding pixel in a different color view.
- 3D-to-2D projection, many-to-one mapping.
- Atomic functions are used, current work to improve with sortscan and binning algorithms.
- Depth-color bilateral filter (DCBF)
 - Computational expensive.
 - Similar to 2D convolution. Similar parallelism techniques work well

	Hardware	Depth propagation	DCBF
CPU	Intel Core 2 Duo E8400 3.0GHz	38 ms	1041 ms
GPU	NVIDIA GeForce 9800 GT	24 ms	14 ms
Speedup		1.6x	74.4x
UNIVERSITY OF ILLINOIS AT URBA	ANA-CHAMPAIGN 19	MPSoc	. August 3. 20

Some upcoming tools

Gluon - specification information enables robust co-parallelization. (Illinois)

- Developers specify pivotal information at function boundaries
 - Heap data object shapes and sizes
 - Object access guarantees
 - Some can be derived from global analyses but others can be practically infeasible to extract from source code.
- Compilers leverage the information to
 - Expose and transform parallelism
 - Perform code and layout transformations for locality

Gluon Parallelism Exposure Example truct data (

Program Dependence Graph Based Application Performance Prediction (Illinois)

Predicting the performance effect of compiler transformations.

□ Redix 2 ■ Radix 4 □ Radix 16

Automating Memory Coalescing using Gluon and PDG

1	#define ASIZE 3000 #define TPB 32		
5	global void kernel (float *a, float *b) {		
10	<pre>int thi = threadIdx.x; int bki = blockIdx.x; float t = (float) thi + bki; int i;</pre>		
15	<pre>int j, End, k; sharedfloat a_shared[TPB][TPB]; sharedfloat b_shared[TPB][TPB]; End = ASIZE % TPB == 0 ? ASIZE / TPB : (ASIZE/TPB)+1; = 0</pre>		
20	<pre>for (j = 0; j < End; j++) { /* Coalesce loads */ </pre>]	
25	<pre>{ if ((j*TPB + thi < ASIZE) && ((bki*TPB+k)*ASIZE + j*TPB + thi < ASIZE * ASIZE)) a_shared[k][thi] = a[(bki*TPB + k)*ASIZE + j*TPB + thi] }syncthreads(); </pre>	Coalesced Loads	
30	/* Conditions: * TPB && obey original end && !(early exit condition) */	J	
35	<pre>for (i = 0; (i < TPB) && (j*TPB+i < ASIZE) && !(bki * TPB + thi >= ASIZE i++) { b_shared[thi][i] = a_shared[thi][i] * t; } </pre>);	
40	<pre>/* Coalesce stores */</pre>	0	
45	<pre>if ((j*TPB + thi < ASIZE) && ((bki*TPB+k)*ASIZE + j*TPB + thi < ASIZE * ASIZE)) b[(bki*TPB + k)*ASIZE + j*TPB + thi] = b_shared[k][thi] } cunctbroadc();</pre>	oalesced Stores	

Memory Layout Transformation GS Lattice-Boltzmann Method Example v=0 v=1 Array of Structure: [z][y][x][e] F(z, y, x, e) = z * |Y| * |X| * |E| + y * |X| * |E| + x * |E| + ev=0v=0v=1v=1v=() Structure of Array: [e][z][y][x] F(z, y, x, e) = e * |Z| * |Y| * |X| + z * |Y| * |X| + y * |X| + x4X faster than AoS on GTX280

The best layout is neither SoA nor AoS

- Tiled Array of Structure, using lower bits in x and y indices, i.e. x_{3:0} and y_{3:0} as lowest dimensions: [z][y_{31:4}][x_{31:4}][e][y₃₀][x₃₀]
 - $F(z, y, x, e) = z * [|Y|/2^4] * [|X|/2^4] * |E| * 2^4 * 2^4 + y_{31:4} * |E| * 2^4 * 2^4 + e * 2^4 * 2^4 + y_{3:0} * 2^4 + x_{3:0}$
- 6.4X faster than AoS, 1.6X faster than SoA on GTX280:
 - Better utilization of data by neighboring cells
 - . This is a scalable lavout, same lavout works for very large objects

Summary

- Tools must understand and manage data accesses
 - Partnership between developers and tools
 - Key to "good" parallelism
 - Must balance between developer specification and program analysis
 - Key to portability and productivity
- "Simple" many-core programming tools within reach
 - Memory bandwidth optimizations
 - Parallel execution granularity adjustments
 - Well-known algorithm changes
 - Heterogeneous computing mapping and data transfers
 - Haves and Have-Nots of many-core computing

• http://www.parallel.illinois.edu/

- Courses, seminars, publications, tools,
- UPCRC. CUDA Center of Excellence. IACAT. ...

Current Challenges

- Execution Models
 - Currently single kernel execution
 - Moving to multiple kernel steaming
- Irregular Algorithms and Data Structures
 - Data layout and tiling transformations for sparse matrices and spatial data structures need to be developed and automated
 - Graph algorithms lack conceptual foundation for locality
- Usability
 - Tools and interfaces may be still too tedious and confusing for application developers

Thank you! Any questions?

MPSoc, August 3, 2009

Applications Entry Timeframes App developers want at Apps entry least 3X-5X for user point (2011) perceived value-add 400 GF 100 GF 200 GF 50 GF 4-core 16-core 2-core 8-core Multi-core G380 G80 G280 Larrabee Many-core 16-cores 64-cores 32-cores 128-cores 1TF 500 GF 2 TF 4 TF Time Apps entry 24-month point (2008) generations 31 MPSoc, August 3, 2009

FIR implementation

1867

ILLINOIS AT URBANA-CHAMPAIGI

Lineasient and a linease

Depth propagation

- Propagate depth information from the depth camera to each color camera.
- 2D point to 3D ray mapping relation: $\vec{r} = \begin{bmatrix} \vec{s}_{ijk} & \vec{t}_{ijk} & f * \vec{w}_{ijk} \end{bmatrix} \begin{bmatrix} x_s & x_t & x_w \end{bmatrix}^T = P\vec{x}$

•Warping equation: (L. McMillan, 1997)

$$\vec{x}_d = P_d^{-1} \left(\frac{|P_r \vec{x}_r|}{d(\vec{x}_r)} (\vec{C}_r - \vec{C}_d) + P_r \vec{x}_r \right)$$

• Compute new depth values:

$$d_d(\vec{x}_d) = \left| \overrightarrow{C_2 X} \right| = \left| \overrightarrow{C_2 C_1} + \overrightarrow{C_1 X} \right|$$
$$d_d(\vec{x}_d) = \left| \overrightarrow{C_2 X} \right|$$
A form of 2D "histogram"

challenging for GPUs

ILLINOIS AT URBANA-CHAMPAIGN
$$\vec{k}$$

тм

Notation: $\{\vec{s}, \vec{t}, \vec{w}\} = \text{local view coordinates.}$ $\{\vec{i}, \vec{j}, \vec{k}\} = \text{global coordinates.}$ f = focal length of the camera. P = point-to-ray projection matrix. $\vec{r} = 3\text{D ray.}$ $\vec{x} = 2\text{D coordinate of a pixel.}$ $\vec{X} = 3\text{D projection of } \vec{x}.$ $\vec{C} = \text{camera center.}$ Subscript r = reference view.Subscript d = desired view.

 $d_r(\vec{x}_r) = \left| \overrightarrow{C_1 X} \right|$

 \vec{C}_r

MPSoc, August 3, 2009

Illinois Vision Video (ViVid) Framework

- Constructed by vision experts with parallel programming expertise
- For video analysis, enhancement, and synthesis apps
- Python module bindings for seamless CPU/GPU deployment
 - MPEG2 Video Decoder and file I/O- C++ (through OpenCV)
 - 2D Convolution C++, Python, CUDA
 - 3D Convolution C++, Python, CUDA
 - 2D Fourier Transform C++, Python, CUDA
 - 3D Fourier Transform C++, Python, CUDA
 - Optical Flow Computation C++ (through OpenCV)
 - Motion Feature Extraction C++, Python, CUDA
 - Pairwise distance between 2 collections of vectors C++, Python, CUDA
- Domain knowledge capture for optimization and auto-tuning

M. Dikman, et al, University of Illinois, Urbana-Champaign

GMAC Heterogeneous Computing Runtime (UPC/Illinois)

- Software-Based Unified CPU/GPU Address Space
 - Same address/pointer used by CPU and GPU
 - No explicit data transfers
- Data reside mainly in GPU memory
 - Close to compute power
 - Occasional CPU access for legacy libraries and I/O
- Customizable automatic data transfers:
 - Transfer everything (safe mode)
 - Transfer dirty data before kernel execution
 - Transfer data as being produced (default)
- Multi-process / Multi-thread support
- CUDA compatible, Linux alpha version available soon.

