JiiNols GSRC

Gigascale Systems Research Center

Many-core Computing
Can compilers and tools do the
heavy lifting?

Wen-mei Hwu

FCRP GSRC, Illinois UPCRC, Illinois CUDA CoE, IACAT, IMPACT
University of Illinois, Urbana-Champaign

Outline GSRC

* Parallel application outlook
* Heavy lifting in “simple” parallel applications
* Promising tool strategies and early evidence

* Challenges and opportunities

SoC specific opportnities and challenges?

UNIVERSITY OF ILLINDIS AT URBANA-CHAMPAIGN
TH

2 MPSoc, August 3, 2009

The Energy Behind Parallel
Revolution GSRC

1200 .
&=® AMD (GPU)
=8 NVIDIA (GPU)
1000 | =% 1nte| (CPU)
800 |
&
S 600
L
)
400
o . Courtesy:
200 73 year shift John Owens
i cual-core]
. g i_
T e : .— | 1 | qu_-]{ Ccl}re
$ho1 2002 2003 2004 2005 2006 2007 2008 2009
Year
1867 UNIVERSITY OF ILLINQIS AT URBANA-CHAMPAIGMN 3 MPSOC, August 3. 2009

My Predictions GSRC

* Mass market parallel apps will focus on many-core
GPUs in the next three to four years
* NVIDIA GeForce, ATl Radon, Intel Larrabee
* “Simple” (vector) parallelism
* Dense matrix, single/multi-grids, stencils, etc.

* Even “simple” parallelism can be challenging
* Memory bandwidth limitation
* Portability and scalability
* Heterogeneity and data affinity

UNIVERSITY OF ILLINDIS AT URBANA-CHAMPAIGN
TH

4 MPSoc, August 3, 2009

DRAM Bandwidth Trends GSRC

Peak vs. Random-access Bandwidth, Desktop & Graphics DRAM
16

) o
-

N DESKTOP GRAPHICS

0.25 +

Sustained GB / s per 64-bit channel

- - - —u
0.125 - — —

0.0625

SDRAM-166 DDR-400 DDR2-1066 DDR3-1066 DDR3-1600 GDDR2-600 GDDR3-1200 GDDR4-1600

=4 Desktop Peak BW —=Desktop Random Access BW Graphics Peak BW ====Graphics Random Access BW

* Random access BW 1.2% of peak for DDR3-1600, 0.8% for
GDDR4-1600 (and falling)

3D stacking and optical interconnects will unlikelv help.
ILLINOIS

5 MPSoc, August 3, 2009

Dense Matrix Multiplication
Example (G80)

140

120

100

80

60

GFLOPS

40

20

0 -

GSRC

Ryoo, et al, PPoPP 2008

normal

prefetch

1x2
8x8 tiles

normal

1x4

prefetch

normal

1x1

prefetch

normal

prefetch

1x2
16x16 tiles

normal

~
\J/
@ unroll 1
| | |Eunroll 2
- Ounroll 4
:
-2 |Ocomplete
S | unroll
| &
:‘j
c
8
2
q) L] L3 L3
5 | Optimizations
1x4

Memory bandwidth limited €= | =) |nstruction throughput limited
Register tiling allows 200 GFOPS

I ILLINOIS

1867 | VT

VoIkov and Demmel, SC’'08

MPSoc, August 3, 2009

Example: Convolution - Base Paralle
Code SRC

e Each parallel task calculates an output element

e Figure shows
e 1D convolution with K=5 kernel
e Calculation of 3 output elements

e Highly parallel but memory bandwidth inefficient
e Uses massive threading to tolerate memory latency
e Each input element loaded up to K times

Input elements in
main memory

1867 UNIVERS
T™

09

Example: convolution using on-chip cachi$ RC

* Qutput elements calculated from cache contents

* Each input element loaded only once

e Cache pressure - (K-1+N) input elements needed for N

output elements

e 7/3=2.3, 7"/3=54, 7'/ 3 =12
* For small caches, the benefit can be significantly reduced due
to the high-ratio of additional elements loaded.

Input elements first
loaded into cache

IL] "Bt

SEEE =
|
o5/ o) 2
09

Example: Streaming for Reduced
Cache Pressure GSRC

* Each input element is loaded into cache in turn
* Or a (n-1)D slice in nD convolution

* All threads consume that input element

* “loop skewing” needed to align the consumption of input
elements

* This stretches the effective size of the on-chip cache

L

2009

Many-core GPU Timing Results GSRC

o Time to compute a 3D k’-kernel convolution on 4 frames of a
720X560 video sequence

e All times are in milliseconds
o Timed on a Tesla $S1070 using one G280 GPU

SHARED 3D HYBRID
BASELINE MEMORY STREAMING FOURIER FOURIER

k (3.1) (3.2) (3.3) (3.4) (3.4)
5 16 11 4 24 15
7 44 15 8 34 17
9 96 48 16 39 20
11 180 77 27 44 23
13 295 45 74 24
15 454 75 56 26

I{1LLINOIS

7 NIVERSITY OF ILLINQIS AT URBANA-CHAMPAIGM 10 MPSOC’ August 3’ 2009

Multi-core CPU Timing Results GSRC

* Time to compute a 3D ki-kernel convolution on 4

frames of a 720X560 video sequence
e All times are in milliseconds

* Timed on a Dual-Socket Duo-Core 2.4 GHz Opteron
svstem. all four cores 11sed

SHARED 3D HYBRID
BASELINE MEMORY STREAMING FOURIER FOURIER
k (3.1) (3.2) (3.3) (3.4) (3.4)
5 136 117 140 128 133
7 362 289 317 235 152
9 1018 597 614 208 213
1 1954 1065 1135 238 237
13 3590 1733 1771 267 271
: 15 6453 2676 2633 338 356
[LLIMNUio
U] e O LG A A A 11 MPSoc, August 3, 2009

Application Example: Up-resolution
of Video GSRC

Nearest & bilinear interpolation:
+ Fast but low quality

Bicubic interpolation:
+ Higher quality but
computational intensive

1867 UNIVERSITY OF ILLINDIS AT URBANA-CHAMPAIGN
™

12 MPSoc, August 3, 2009

Implementation Overview GSRC

e Step 1: Find the coefficients of the shifted B-

Splines.
* Two single pole IIR filters along each dimension
* Implemented with recursion along scan lines

* Step 2: Use the coefficients to interpolate the
image
* FIR filter for bicubic interpolation implemented as a k=4 2D
convolution with (2+16+2)! input tiles with halos

* Streaming not required due to small 2D kernel, on-chip cache
works well as is.

* Step 3: DirectX displays from the GPU

13 MPSoc, August 3, 2009

Upconversion Results GSRC

o Parallelize bicubic B-spline interpolation
o Interpolate QCIF (176x144) to nearly HDTV (1232x1008)
o Improved quality over typical bilinear interpolation

o Improved speed over typical CPU implementations
o Measured 350x speedup over un-optimized CPU code
o Estimated 50x speedup over optimized CPU code from inspection of CPU code

e Real-time!
:uos

I I (N

CPU Intel Pentium D 5 ms 1689 ms

GPU nVidia GeForce 1ms 4 ms
8800 GTX

1867 UNIVERSITY OF ILLINDIS AT URBANA-CHAMPAIGN
™

14

Application Example:
Depth-Image Based Rendering GSRC

* Three main steps:
* Depth propagation
* Color-based depth enhancement
* Rendering

UNIVERSITY OF ILLINDIS AT URBANA-CHAMPAIGN
TH

15 MPSoc, August 3, 2009

Color-based depth enhancement GSRC

Propagated depth image
at color view

4 NV)

)) i))
Occlusion Depth-color I_Dlrectlon_al Depth edge
bilateral disocclusion
removal filteri filli enhancement
) iltering | illing)

- J

-

Enhanced depth image

_ Propagated depth
1LL1NL5)1§ a by

16 MPSoc, August 3, 2009

Depth - color bilateral filteri

1 - — — -
da= 5 > Coz ([Fa = Tal) - Goz (1L~ Il) - ds

-[-{i.:‘l_ = Z GTJE (|?:1 — FBU . (—;T.:r,f‘; {|I:l — IBD

Besy

da : depth value of point A.

Iy : color value of point A.
TA =|ua.,va]l : 2D coordinate of point A.
Sa @ set of A neighboring points.
— |2 .
Gy (|Z]) = exp 5 . Gaussian kernel.
20
Wa : normalizing term.

[§ ILLINOIS G, *G,,

IVERSITY OF ILLINOIS AT URBANA-CHAMPAIGM 17 MPSOC’ O—Augugt 3’ 2009

DIBR Visual Results QSRC

[§ [LLINOIS

1867 UNIVERSITY OF ILLINDIS AT URBANA-CHAMPAIGN 18 MPSOC’ August 3. 2009

DIBR Time results GSRC
* Depth propagation.

* Not computationally intensive but hard to parallelize

* Each pixel in the depth view is be copied to the corresponding
pixel in a different color view.

* 3D-to-2D projection, many-to-one mapping.
* Atomic functions are used, current work to improve with sort-
scan and binning algorithms.

* Depth-color bilateral filter (DCBF)

* Computational expensive.
* Similar to 2D convolution. Similar parallelism techniques work

well
Intel Core 2 Duo E8400 3.0GHz 38 ms 1041 ms
GPU NVIDIA GeForce 9800 GT 24 ms 14 ms
-;"T Speedup 1.6Xx 74.4x

7 NIVERSITY OF ILLINQIS AT URBANA-CHAMPAIGM 19 MPSOC’ August 3’ 2009

1867 UNIWVERSITY OF ILLINCHS AT URBANA-CHAMPAIGM q
T .

Some upcoming tools

Gluon - specification information
enables robust co-parallelization. qS RC
(lllinois)
* Developers specify pivotal information at function
boundaries
* Heap data object shapes and sizes
* Object access guarantees

* Some can be derived from global analyses but others can
be practically infeasible to extract from source code.

* Compilers leverage the information to
* Expose and transform parallelism
* Perform code and layout transformations for locality

UNIVERSITY OF ILLINDIS AT URBANA-CHAMPAIGN
TH

21 MPSoc, August 3, 2009

Gluon Parallelism Exposu
Example

struct data {
float x; float y; float z;

X

C

int *tpacf(int len, struct data *d) {
4. spec(d: r, (int)[len]));

int *hist = malloc(SZ*sizeof(int));

int cal_bin(st __spec(hist: (int)[SZ]);

st
1. __spec(*a: r/(data)[1]);
2. __spec(*b: r, (data)[1]);
3. __spec(ret_v: range(0,S2));

for (i=0; i < len; i++) {
for (j =0;] <len; j++){

6. intbin = cal_bin(&d[i],&d[j]);

int bin = . *b*/

}return(bi 7. hist[bin] += 1;
}

{1 LLINOIS
136 UNIVERSITY OF ILLINDIS AT URBANA-CHAMPAIGN } 22 MPSOC’ August 3’ 2009

Program Dependence Graph Based
Application Performance Prediction GSRC
(Illinois)

Predicting the performance effect of compiler transformations.

Loop Region
W =8

— '

W=7? W =1

¢ Baghsorkhi and Hwu,
j OIS shared 2t +1 Jr=_. EPHAM 2009
q [LI |
UNIVEHSITYGFI_LNOIEF:B*\NA-CHAMPAIGI\ 23 MPSOC, August 3’ 2009

[0 Redix 2 M Radix 4 1 Radix 16

OPredicted B Measmwed

0.003 7 Predicted Measured
‘g 0.0025 - o] - 15 .
5 o] FFT : MM
g z
E 00015 - =15
£ o001 é 1 —I
- 5
Gj 0.0005 - g 05 |_I ﬂ
0 ! o f-ﬁ 0 T T T T
Global Shared Global Shared Tiled Tiled Tiled Tiled Tikd

16x16 16332 1664 16x128 162192

¢ mOYYAD 256 L1512

0.007 ~ Predicted Measured
0.006 _

0.005 - [] [] — [] B
0.004
0.003 -
0.002 -
0.001 ~

Execution Time (Seconds

111 & &
TPl UNIVERSITY OF lgust 3. 2009

™

Automating Memory Coalescing
using Gluon and PDG

10

15

20

25

#define ASTZE 3000
#define TPB 32

void

kernel (float *a,

{

float *b

__annotation {L“__glabal__'ﬂhil“J;
__annotation (L"garray a 2 4 ASIZE ASIZE");
__annotation (L"garray b 2 4 ASIZE ASIZE");

int thi = threadIdx.x;

int bki = blocklIdx.x:

float £ = (fleoat) thi + bki;
int 1i;

I__annatation {L“Boundchk“J;I
1f (bki * TFB + thi >= ASIZE)

return;

for (i = 0; i < ASIZE; i++)

{

__annotation (L"loop i 0 ASIZE 1")j;

Dl (DR1 I PBTCOL) "ADI2E T 1] =

a[{hki*TPB+thiJ*ﬂSIZE + 1] * t;

1 #define ASTIR 3000
#datine TER 32

_glebal void
5 kernel (float *a, float *b)
{
int thi = threadldx.x:
int bki = blockIdx,x:
float t = (float) thi + bki;
10 int 1

int i, Bnd, k;
_shared float a_shared[TPR][TER]:
_shared float b shared[TFR][TPR];

ao e g
paaeys

15
End = ASIZE & TPB == 0 7 ASTEE / TPR : (RSIZE/TPR)+1: :E
for (3= 0; 1 < End; i+ 20
ﬂ(‘ i 1< Endj 11t av
/* Coalesce loads ¥/
a0 __syncthreads();
for (k= 0; k € TPR: k)
{
if {[{*TPB + thi < ASTZR) &
((bki*TER+k)*ASTZR + 1*TPR + thi < RSTTE * ASTIR))
25 a_shared[k:[_hi: = a[(bk1*TER + k) *ASTZR + {*TER + thi];
__&yncthreads();
/* Conditions:
0 * TPR &k obey original end && !(early exit condition)
*f
for (1 =0y
(1< TPB) && (J*TPB+i < ASIZE) &k !(bki * TPB nthi »= MSTOR);
1+) 0
3 [%3
b shared[thi][i] = a shared[thi][1] * ¢;] = H
1- = 3
. o
' =
0
[* Coalesce stores */ :
40 __syncthreads();
for (k = 0; k < TPB; ktt)
{
if ((1¥TPB + thi < ASTIR) &
{ (bkI¥TERAR)$RSTIE + 19128 + thi < AGTTR * AGTEE))
45 B[(LKi*TPR + k)*ASTEE + *TPB + thi] = b shared[k|[thi];
E‘..'nﬂl krazdeiis

- C

spe o]
pacssajeon)

SouolS
passa 2o

Memory Layout Transformation
Lattice-Boltzmann Method Example (SRC

< y=0 > < Y= >

0 0 T

Array of Structure: [z][y][x][e]
Fz,y,x,e)=z*[Y|*IX|*[E| +y " [X| " [E[+x " |[E| +e& | <

Structure of Array: [e][z][V][X]
F(z.y. x,e)=e™ |[Z] " Y| * X[+ z* [Y] * [X] +y * [X] + X
4X faster than AoS on GTX280

UNIVERSITY OF ILLINDIS AT URBANA-CHAMPAIGN
TH

26 MPSoc, August 3, 2009

The best layout is neither SoA
nor AoS GSRC

o Tiled Array of Structure, using lower bits in x and y indices, i.e. x,, and y,, as

lowest dimensions: [z][yy,][x;.]J[€]1[Y:][%:]

e F(z,y,Xx,€)=z*Y|/209*0|X]| /29 * |E| * 2¢* 2 +
Yoo CIXT/29% [E| * 29 24 X" |E] * 2% 24+ @ * 24" 2%y 2+ X

o 6.4X faster than AoS, 1.6X faster than SoA on GTX280:

o Better utilization of data by neighboring cells
- Thicic a eralahle lavniits came lavniit wnrke far verv larce nhiecrtc

< y=0 >4Y=1 >4Y=O > < y=1>< y=0>4y=1 > < y=0>

UNIVERSITY OF ILLINDIS AT URBANA-CHAMPAIGN
TH

27 MPSoc, August 3, 2009

Summary GSRC

* Tools must understand and manage data accesses
* Partnership between developers and tools
* Key to “good” parallelism
* Must balance between developer specification and program analysis
* Key to portability and productivity

 “Simple” many-core programming tools within reach
* Memory bandwidth optimizations
* Parallel execution granularity adjustments
* Well-known algorithm changes
* Heterogeneous computing mapping and data transfers
* Haves and Have-Nots of many-core computing

* http://www.parallel.illinois.edu/
* Courses, seminars, publications, tools,
e UPCRC. CUDA Center of Excellence. IACAT. ...

IVERSITY OF ILLINGIS AT URBANA-CHAMPAIGN

1867 | VLT

28 MPSoc, August 3, 2009

http://www.parallel.illinois.edu/

Current Challenges GSRC

* Execution Models
* Currently single kernel execution
* Moving to multiple kernel steaming

* Irregular Algorithms and Data Structures

* Data layout and tiling transformations for sparse
matrices and spatial data structures need to be
developed and automated

* Graph algorithms lack conceptual foundation for locality

* Usability
* Tools and interfaces may be still too tedious and
confusing for application developers

UNIVERSITY OF ILLINDIS AT URBANA-CHAMPAIGN
TH

29 MPSoc, August 3, 2009

GSRC

Thank you! Any questions?

UNIVERSITY OF ILLINDIS AT URBANA-CHAMPAIGN
TH

30 MPSoc, August 3, 2009

Applications Entry Timeframes GSRC

App developers want at A {

least 3X-5X for user PPs SI°ry
_ point (2011)

perceived value-add

50 GF 100 GF 200 GF 400 GF

2-core 4-core 8-core 16-core
e e Multi-core
G380
G380 G280 Larrabee
_Many-core
16-cores 32-cores | 64-cores 128-cores

500 GF 1TF 2TF 4 TF

Time
Apps entry 24-month

IL point (2008) generations

31 MPSoc, August 3, 2009

>

FIR implementation GSRC

Linegsitistepislianiriold Baske

k =x-0x/RO*R
g[X] = c[x-1]wO[K] + c[x]w1[Kk] + c[x+1]w2[K] + c[x+2]w3K]
{1 LLINOIS

Elll UnIvERSITY OF ILLINIS AT URBANA-CHAMPAIGN 32 MPSOC, August 3, 2009

™

Depth propagation

GSRC

* Propagate depth information from the depth camera to each color camera.

* 2D point to 3D ray mapping relation:

F={ Sk tge fraigs || om0z,]TZPf
*Warping equation: (L. McMillan, 1997)

T, =Py ('5()' (G, — Cy) + PT:ET)
* Compute new depth values:

da(Ty) = ‘cﬁ‘ _ ‘020{ +OX

A form of 2D “histogram”
challenging for GPUs

™

NS sNN

i - C_;d
[LLINOIS |/,

UNIVERSITY OF ILLINDIS AT URBANA-CHAMPAIGN 33

—

Notation:

{5,t, W} = local view coordinates.
{37, E} = global coordinates.

f = focal length of the camera.

P = point-to-ray projection matrix.
7 = 3D ray.

Z = 2D coordinate of a pixel.

)__(: = 3D projection of .

C = camera center.
Subscript r = reference view.

Subscript d = desired view.

a.(7,) = [C7X|

MPSoc, August 3, 2009

Ilinois Vision Video (ViVid) GSRC
Framework

o Constructed by vision experts with parallel programming expertise
e For video analysis, enhancement, and synthesis apps

e Python module bindings for seamless CPU/GPU deployment
e MPEG2 Video Decoder and file 1/0- C++ (through OpenCV)
e 2D Convolution - C++, Python, CUDA
e 3D Convolution - C++, Python, CUDA
e 2D Fourier Transform - C++, Python, CUDA
e 3D Fourier Transform - C++, Python, CUDA
e Optical Flow Computation - C++ (through OpenCV)
e Motion Feature Extraction - C++, Python, CUDA
o Pairwise distance between 2 collections of vectors - C++, Python, CUDA

e Domain knowledge capture for optimization and auto-tuning

M. Dikman, et al, University of lllinois, Urbana-Champaign

1867 UNIVERSITY OF ILLINDIS AT URBANA-CHAMPAIGN
TH

34 MPSoc, August 3, 2009

GMAC Heterogeneous Computing
Runtime (UPC/lllinois) GSRC

* Software-Based Unified CPU/GPU Address Space
* Same address/pointer used by CPU and GPU
* No explicit data transfers
* Data reside mainly in GPU memory
* Close to compute power
* QOccasional CPU access for legacy libraries and |/0
* Customizable automatic data transfers:
* Transfer everything (safe mode)
* Transfer dirty data before kernel execution
* Transfer data as being produced (default)

* Multi-process / Multi-thread support
* CUDA compatible, Linux alpha version available
soon.

UNIVERSITY OF ILLINDIS AT URBANA-CHAMPAIGN
TH

35 MPSoc, August 3, 2009

	Many-core Computing Can compilers and tools do the heavy lifting?
	Outline
	The Energy Behind Parallel Revolution
	My Predictions
	DRAM Bandwidth Trends
	Dense Matrix Multiplication Example (G80)
	Example: Convolution – Base Parallel Code
	Example: convolution using on-chip caching
	Example: Streaming for Reduced Cache Pressure
	Many-core GPU Timing Results
	Multi-core CPU Timing Results
	Application Example: Up-resolution of Video
	Implementation Overview
	Upconversion Results
	Application Example: Depth-Image Based Rendering
	Color-based depth enhancement
	Depth – color bilateral filtering
	Slide 18
	DIBR Time results
	Slide 20
	Gluon – specification information enables robust co-parallelization. (Illinois)
	Gluon Parallelism Exposure Example
	Slide 23
	Slide 24
	Automating Memory Coalescing using Gluon and PDG prediction
	 Memory Layout Transformation Lattice-Boltzmann Method Example
	The best layout is neither SoA nor AoS
	Summary
	Current Challenges
	Slide 30
	Applications Entry Timeframes
	FIR implementation
	Depth propagation
	Illinois Vision Video (ViVid) Framework
	GMAC Heterogeneous Computing Runtime (UPC/Illinois)

