
Many-core Computing Many-core Computing
Can compilers and tools do the Can compilers and tools do the

heavy lifting? heavy lifting?

Wen-mei HwuWen-mei Hwu

FCRP GSRC, Illinois UPCRC, Illinois CUDA CoE, IACAT, IMPACTFCRP GSRC, Illinois UPCRC, Illinois CUDA CoE, IACAT, IMPACT
University of Illinois, Urbana-ChampaignUniversity of Illinois, Urbana-Champaign

MPSoc, August 3, 2009MPSoc, August 3, 200922

OutlineOutline

• Parallel application outlookParallel application outlook

• Heavy lifting in “simple” parallel applicationsHeavy lifting in “simple” parallel applications

• Promising tool strategies and early evidencePromising tool strategies and early evidence

• Challenges and opportunitiesChallenges and opportunities

SoC specific opportnities and challenges?

MPSoc, August 3, 2009MPSoc, August 3, 200933

The Energy Behind Parallel The Energy Behind Parallel
RevolutionRevolution

•
GPU in every PC– massive volume and potential impactGPU in every PC– massive volume and potential impact

Courtesy: John Owens

Courtesy:
John Owens3 year shift

MPSoc, August 3, 2009MPSoc, August 3, 200944

My PredictionsMy Predictions

• Mass market parallel apps will focus on many-core Mass market parallel apps will focus on many-core
GPUs in the next three to four yearsGPUs in the next three to four years
• NVIDIA GeForce, ATI Radon, Intel LarrabeeNVIDIA GeForce, ATI Radon, Intel Larrabee
• ““Simple” (vector) parallelismSimple” (vector) parallelism
• Dense matrix, single/multi-grids, stencils, etc.Dense matrix, single/multi-grids, stencils, etc.

• Even “simple” parallelism can be challengingEven “simple” parallelism can be challenging
• Memory bandwidth limitationMemory bandwidth limitation
• Portability and scalabilityPortability and scalability
• Heterogeneity and data affinityHeterogeneity and data affinity

MPSoc, August 3, 2009MPSoc, August 3, 200955

DRAM Bandwidth TrendsDRAM Bandwidth Trends

• Random access BW Random access BW 1.2%1.2% of peak for DDR3-1600, of peak for DDR3-1600, 0.8% 0.8% for for
GDDR4-1600 (and falling)GDDR4-1600 (and falling)

• 3D stacking and optical interconnects will unlikely help.3D stacking and optical interconnects will unlikely help.

MPSoc, August 3, 2009MPSoc, August 3, 200966

Dense Matrix Multiplication Dense Matrix Multiplication
Example (G80)Example (G80)

G
F

LO
P

S

0

20

40

60

80

100

120

140

n
o
rm

a
l

p
re

fe
tc

h

n
o
rm

a
l

p
re

fe
tc

h

n
o
rm

a
l

p
re

fe
tc

h

n
o
rm

a
l

p
re

fe
tc

h

n
o
rm

a
l

p
re

fe
tc

h

n
o
rm

a
l

p
re

fe
tc

h

1x1 1x2 1x4 1x1 1x2 1x4

8x8 tiles 16x16 tiles

unroll 1

unroll 2

unroll 4

complete
unroll

C
an

n
ot

 r
u

n

Optimizations

Memory bandwidth limited Instruction throughput limited

Register tiling allows 200 GFOPS
Volkov and Demmel, SC’08

Ryoo, et al, PPoPP 2008

MPSoc, August 3, 2009MPSoc, August 3, 200977

Example: Convolution – Base Parallel Example: Convolution – Base Parallel
CodeCode

• Each parallel task calculates an output elementEach parallel task calculates an output element

• Figure shows Figure shows
• 1D convolution with K=5 kernel1D convolution with K=5 kernel

• Calculation of 3 output elementsCalculation of 3 output elements

• Highly parallel but memory bandwidth inefficientHighly parallel but memory bandwidth inefficient
• Uses massive threading to tolerate memory latencyUses massive threading to tolerate memory latency

• Each input element loaded up to K timesEach input element loaded up to K times

Input elements in
main memory

MPSoc, August 3, 2009MPSoc, August 3, 200988

Example: convolution using on-chip cachingExample: convolution using on-chip caching

• Output elements calculated from cache contentsOutput elements calculated from cache contents
• Each input element loaded only onceEach input element loaded only once
• Cache pressure – (K-1+N) input elements needed for N Cache pressure – (K-1+N) input elements needed for N

output elements output elements
• 7/3 = 2.3, 77/3 = 2.3, 722/3/322 = 5.4, 7 = 5.4, 733 / 3 / 333 = 12 = 12
• For small caches, the benefit can be significantly reduced due For small caches, the benefit can be significantly reduced due

to the high-ratio of additional elements loaded.to the high-ratio of additional elements loaded.

Input elements first
loaded into cache

MPSoc, August 3, 2009MPSoc, August 3, 200999

Example: Streaming for Reduced Example: Streaming for Reduced
Cache PressureCache Pressure

• Each input element is loaded into cache in turnEach input element is loaded into cache in turn
• Or a (n-1)D slice in nD convolutionOr a (n-1)D slice in nD convolution

• All threads consume that input element All threads consume that input element
• ““loop skewing” needed to align the consumption of input loop skewing” needed to align the consumption of input

elementselements
• This stretches the effective size of the on-chip cacheThis stretches the effective size of the on-chip cache

MPSoc, August 3, 2009MPSoc, August 3, 20091010

Many-core GPU Timing Results Many-core GPU Timing Results

• Time to compute a 3D kTime to compute a 3D k33-kernel convolution on 4 frames of a -kernel convolution on 4 frames of a
720X560 video sequence720X560 video sequence
• All times are in millisecondsAll times are in milliseconds

• Timed on a Tesla S1070 using one G280 GPUTimed on a Tesla S1070 using one G280 GPU

MPSoc, August 3, 2009MPSoc, August 3, 20091111

Multi-core CPU Timing ResultsMulti-core CPU Timing Results

• Time to compute a 3D kTime to compute a 3D k33-kernel convolution on 4 -kernel convolution on 4
frames of a 720X560 video sequenceframes of a 720X560 video sequence
• All times are in millisecondsAll times are in milliseconds
• Timed on a Dual-Socket Duo-Core 2.4 GHz Opteron Timed on a Dual-Socket Duo-Core 2.4 GHz Opteron

system, all four cores usedsystem, all four cores used

MPSoc, August 3, 2009MPSoc, August 3, 20091212

Application Example: Up-resolution Application Example: Up-resolution
of Videoof Video

Nearest & bilinear interpolation:
 + Fast but low quality

Bicubic interpolation:
 + Higher quality but
 computational intensive

MPSoc, August 3, 2009MPSoc, August 3, 20091313

Implementation OverviewImplementation Overview

• Step 1: Find the coefficients of the shifted B-Step 1: Find the coefficients of the shifted B-
Splines.Splines.

• Two single pole IIR filters along each dimensionTwo single pole IIR filters along each dimension
• Implemented with recursion along scan linesImplemented with recursion along scan lines

• Step 2: Use the coefficients to interpolate the Step 2: Use the coefficients to interpolate the
imageimage

• FIR filter for bicubic interpolation implemented as a k=4 2D FIR filter for bicubic interpolation implemented as a k=4 2D
convolution with (2+16+2)convolution with (2+16+2)22 input tiles with halos input tiles with halos

• Streaming not required due to small 2D kernel, on-chip cache Streaming not required due to small 2D kernel, on-chip cache
works well as is.works well as is.

• Step 3: DirectX displays from the GPUStep 3: DirectX displays from the GPU

MPSoc, August 3, 2009MPSoc, August 3, 20091414

Upconversion ResultsUpconversion Results

• Parallelize bicubic B-spline interpolationParallelize bicubic B-spline interpolation
• Interpolate QCIF (176x144) to nearly HDTV (1232x1008)Interpolate QCIF (176x144) to nearly HDTV (1232x1008)

• Improved quality over typical bilinear interpolationImproved quality over typical bilinear interpolation

• Improved speed over typical CPU implementationsImproved speed over typical CPU implementations
• Measured 350x speedup over un-optimized CPU codeMeasured 350x speedup over un-optimized CPU code

• Estimated 50x speedup over optimized CPU code from inspection of CPU codeEstimated 50x speedup over optimized CPU code from inspection of CPU code

• Real-time!Real-time!

Hardware IIR FIR

CPU Intel Pentium D 5 ms 1689 ms

GPU nVidia GeForce
8800 GTX

1 ms 4 ms

MPSoc, August 3, 2009MPSoc, August 3, 20091515

Application Example: Application Example:
Depth-Image Based Rendering Depth-Image Based Rendering

• Three main steps:Three main steps:
• Depth propagationDepth propagation
• Color-based depth enhancementColor-based depth enhancement
• RenderingRendering

MPSoc, August 3, 2009MPSoc, August 3, 20091616

Naïve disocclusion filling Directional disocclusion filling

Before After

Propagated depth Enhanced depth

Color-based depth enhancementColor-based depth enhancement

Depth-color
bilateral
filtering

Occlusion
removal

Directional
disocclusion

filling

Propagated depth image
at color view

Depth edge
enhancement

Enhanced depth image

MPSoc, August 3, 2009MPSoc, August 3, 20091717

Depth – color bilateral filteringDepth – color bilateral filtering

)(2 BA xxG
s

 −σ

)(2 BA IIG
r

−σ

22 *
rs

GG σσ

I

MPSoc, August 3, 2009MPSoc, August 3, 20091818

DIBR Visual ResultsDIBR Visual Results

Left view Right view

Rendered viewMiddle view

MPSoc, August 3, 2009MPSoc, August 3, 20091919

DIBR Time resultsDIBR Time results

• Depth propagation.Depth propagation.
• Not computationally intensive but hard to parallelizeNot computationally intensive but hard to parallelize
• Each pixel in the depth view is be copied to the corresponding Each pixel in the depth view is be copied to the corresponding

pixel in a different color view.pixel in a different color view.
• 3D-to-2D projection, many-to-one mapping.3D-to-2D projection, many-to-one mapping.
• Atomic functions are used, current work to improve with sort-Atomic functions are used, current work to improve with sort-

scan and binning algorithms.scan and binning algorithms.

• Depth-color bilateral filter (DCBF)Depth-color bilateral filter (DCBF)
• Computational expensive.Computational expensive.
• Similar to 2D convolution. Similar parallelism techniques work Similar to 2D convolution. Similar parallelism techniques work

wellwell

Hardware Depth propagation DCBF

CPU Intel Core 2 Duo E8400 3.0GHz 38 ms 1041 ms

GPU NVIDIA GeForce 9800 GT 24 ms 14 ms

Speedup 1.6x 74.4x

Some upcoming toolsSome upcoming tools

MPSoc, August 3, 2009MPSoc, August 3, 20092121

Gluon – specification information Gluon – specification information
enables robust co-parallelization. enables robust co-parallelization.
(Illinois)(Illinois)
• Developers specify pivotal information at function Developers specify pivotal information at function

boundariesboundaries
• Heap data object shapes and sizesHeap data object shapes and sizes
• Object access guaranteesObject access guarantees
• Some can be derived from global analyses but others can Some can be derived from global analyses but others can

be practically infeasible to extract from source code.be practically infeasible to extract from source code.

• Compilers leverage the information toCompilers leverage the information to
• Expose and transform parallelismExpose and transform parallelism
• Perform code and layout transformations for localityPerform code and layout transformations for locality

MPSoc, August 3, 2009MPSoc, August 3, 20092222

Gluon Parallelism Exposure Gluon Parallelism Exposure
ExampleExample

struct data {
 float x; float y; float z;
};

int cal_bin(struct data *a,
 struct data *b) {

1. __spec(*a: r, (data)[1]);
2. __spec(*b: r, (data)[1]);
3. __spec(ret_v: range(0,SZ));

 int bin = . ; /* use *a and *b*/
 return(bin);
}

int *tpacf(int len, struct data *d) {
4. __spec(d: r, (int)[len]);

 int *hist = malloc(SZ*sizeof(int));
5. __spec(hist: (int)[SZ]);

 for (i=0; i < len; i++) {
 for (j = 0; j < len; j++) {

6. int bin = cal_bin(&d[i],&d[j]);

7. hist[bin] += 1;
 }
 }
}

No side effect on
d elements

hist safe to
privatize

data layout can
be done safely

MPSoc, August 3, 2009MPSoc, August 3, 20092323

Loop Region
W = 8

W = 1 W = 1

syncthreads()

T F

i++

W = ? W = 1

T F

shared[2tx + 1]+ = ...

2
i +1

≤ 256

2tx+ 2 ≡ 0

i+1
2

n = 2 * tx + 1;
/ *Load data i nto shared memory*/
. . .
f or(st r i de = 2; st r i de <= 256; st r i de << 1)
f

i f (((n+1) %str i de == 0)
shared[n]+=shared[n - st r i de >> 1] ;

syncthreads() ;
g

Program Dependence Graph Based
Application Performance Prediction
(Illinois)

C
24
6 S

cs
C

16£ cc
4 S

cs
C

4£ cc
1 ¹Scs

B
4
C

8
2

| {z }
8 times

Predicting the performance effect of compiler transformations.

Baghsorkhi and Hwu,
EPHAM 2009

MPSoc, August 3, 2009MPSoc, August 3, 20092424

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

Global Shared Global Shared

E
xe

cu
tio

n
T

im
e

(s
ec

on
ds

)
Redix 2 Radix 4 Radix 16

Predicted Measured

FFT MM

prefix scan

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

In
it

In
it_

Ban
k

Div

Div
_B

an
k

In
it

In
it_

Ban
k

Div

Div
_B

an
k

E
xe

cu
tio

n
T

im
e

(S
ec

on
ds

)

64 128 256 512

 Measured Predicted

MPSoc, August 3, 2009MPSoc, August 3, 20092525

Automating Memory CoalescingAutomating Memory Coalescing
using Gluon and PDG predictionusing Gluon and PDG prediction

MPSoc, August 3, 2009MPSoc, August 3, 20092626

Structure of Array: [e][z][y][x]Structure of Array: [e][z][y][x]
F(z, y, x, e) = e * |Z| * |Y| * |X|+ z * |Y| * |X| +y * |X| + xF(z, y, x, e) = e * |Z| * |Y| * |X|+ z * |Y| * |X| +y * |X| + x

4X faster than AoS on GTX2804X faster than AoS on GTX280

Memory Layout Transformation Memory Layout Transformation
Lattice-Boltzmann Method ExampleLattice-Boltzmann Method Example

Array of Structure: [z][y][x][e]Array of Structure: [z][y][x][e]
F(z, y, x, e) = z * |Y| * |X| * |E| + y * |X| * |E| + x * |E| + eF(z, y, x, e) = z * |Y| * |X| * |E| + y * |X| * |E| + x * |E| + e

y=0 y=1

y=0 y=1 y=0 y=1 y=0 y=1

MPSoc, August 3, 2009MPSoc, August 3, 20092727

The best layout is neither SoA The best layout is neither SoA
nor AoSnor AoS

• Tiled Array of Structure, using lower bits in x and y indices, i.e. xTiled Array of Structure, using lower bits in x and y indices, i.e. x3:03:0 and y and y3:03:0 as as
lowest dimensions: [z][ylowest dimensions: [z][y31:431:4][x][x31:431:4][e]][e][y[y3:03:0][x][x3:03:0]]
• F(z, y, x, e) = z * F(z, y, x, e) = z * |Y|/2|Y|/244 * * |X|/2|X|/244 * |E| * 2 * |E| * 24 4 * 2* 244 + +

yy31:4 31:4 * * |X|/2|X|/244 * |E| * 2* |E| * 24 4 * 2* 24 4 + x+ x31:4 31:4 * |E| * 2* |E| * 24 4 * 2* 24 4 + e * 2 + e * 2 4 4 * 2* 244+ y+ y3:0 3:0 * 2* 24 4 + x+ x3:03:0

• 6.4X faster than AoS, 1.6X faster than SoA on GTX280:6.4X faster than AoS, 1.6X faster than SoA on GTX280:
• Better utilization of data by neighboring cellsBetter utilization of data by neighboring cells

• This is a scalable layout: same layout works for very large objects. This is a scalable layout: same layout works for very large objects.

y=0 y=1 y=0 y=1 y=0 y=1 y=0

MPSoc, August 3, 2009MPSoc, August 3, 20092828

SummarySummary

• Tools must understand and manage data accessesTools must understand and manage data accesses
• Partnership between developers and toolsPartnership between developers and tools
• Key to “good” parallelismKey to “good” parallelism
• Must balance between developer specification and program analysisMust balance between developer specification and program analysis
• Key to portability and productivityKey to portability and productivity

• ““Simple” many-core programming tools within reachSimple” many-core programming tools within reach
• Memory bandwidth optimizationsMemory bandwidth optimizations
• Parallel execution granularity adjustmentsParallel execution granularity adjustments
• Well-known algorithm changesWell-known algorithm changes
• Heterogeneous computing mapping and data transfersHeterogeneous computing mapping and data transfers
• Haves and Have-Nots of many-core computingHaves and Have-Nots of many-core computing

• http://www.parallel.illinois.edu/http://www.parallel.illinois.edu/
• Courses, seminars, publications, tools, Courses, seminars, publications, tools,
• UPCRC, CUDA Center of Excellence, IACAT, …UPCRC, CUDA Center of Excellence, IACAT, …

http://www.parallel.illinois.edu/

MPSoc, August 3, 2009MPSoc, August 3, 20092929

Current Challenges Current Challenges

• Execution ModelsExecution Models
• Currently single kernel execution Currently single kernel execution
• Moving to multiple kernel steamingMoving to multiple kernel steaming

• Irregular Algorithms and Data StructuresIrregular Algorithms and Data Structures
• Data layout and tiling transformations for sparse Data layout and tiling transformations for sparse

matrices and spatial data structures need to be matrices and spatial data structures need to be
developed and automateddeveloped and automated

• Graph algorithms lack conceptual foundation for localityGraph algorithms lack conceptual foundation for locality

• UsabilityUsability
• Tools and interfaces may be still too tedious and Tools and interfaces may be still too tedious and

confusing for application developersconfusing for application developers

MPSoc, August 3, 2009MPSoc, August 3, 20093030

Thank you! Any questions?

MPSoc, August 3, 2009MPSoc, August 3, 20093131

Applications Entry TimeframesApplications Entry Timeframes

2-core 4-core 8-core 16-core

16-cores
500 GF

32-cores
1TF

64-cores
2 TF

50 GF 100 GF 200 GF

Apps entry
point (2008)

Many-core

Multi-core

Time

128-cores
4 TF

Apps entry
point (2011)

400 GF

App developers want at
least 3X-5X for user
perceived value-add

24-month
generations

G80 G280
G380

Larrabee

MPSoc, August 3, 2009MPSoc, August 3, 20093232

Cubic interpolation for 1D case

FIR implementationFIR implementation

k = x- x/R *R
g[x] = c[x-1]w0[k] + c[x]w1[k] + c[x+1]w2[k] + c[x+2]w3k]

Linear interpolation for 1D case

MPSoc, August 3, 2009MPSoc, August 3, 20093333

Depth propagationDepth propagation
• Propagate depth information from the depth camera to each color camera.

• 2D point to 3D ray mapping relation:

•Warping equation: (L. McMillan, 1997)

• Compute new depth values:

A form of 2D “histogram”
challenging for GPUs

MPSoc, August 3, 2009MPSoc, August 3, 20093434

Illinois Vision Video (ViVid) Illinois Vision Video (ViVid)
FrameworkFramework

M. Dikman, et al, University of Illinois, Urbana-Champaign

• Constructed by vision experts with parallel programming expertiseConstructed by vision experts with parallel programming expertise

• For video analysis, enhancement, and synthesis appsFor video analysis, enhancement, and synthesis apps

• Python module bindings for seamless CPU/GPU deploymentPython module bindings for seamless CPU/GPU deployment
• MPEG2 Video Decoder and file I/O- C++ (through OpenCV)MPEG2 Video Decoder and file I/O- C++ (through OpenCV)
• 2D Convolution - C++, Python, CUDA2D Convolution - C++, Python, CUDA
• 3D Convolution - C++, Python, CUDA3D Convolution - C++, Python, CUDA
• 2D Fourier Transform - C++, Python, CUDA2D Fourier Transform - C++, Python, CUDA
• 3D Fourier Transform - C++, Python, CUDA3D Fourier Transform - C++, Python, CUDA
• Optical Flow Computation - C++ (through OpenCV)Optical Flow Computation - C++ (through OpenCV)
• Motion Feature Extraction - C++, Python, CUDAMotion Feature Extraction - C++, Python, CUDA
• Pairwise distance between 2 collections of vectors - C++, Python, CUDAPairwise distance between 2 collections of vectors - C++, Python, CUDA

• Domain knowledge capture for optimization and auto-tuningDomain knowledge capture for optimization and auto-tuning

MPSoc, August 3, 2009MPSoc, August 3, 20093535

35

GMAC Heterogeneous Computing GMAC Heterogeneous Computing
Runtime (UPC/Illinois)Runtime (UPC/Illinois)

• Software-Based Unified CPU/GPU Address SpaceSoftware-Based Unified CPU/GPU Address Space
• Same address/pointer used by CPU and GPUSame address/pointer used by CPU and GPU
• No explicit data transfersNo explicit data transfers

• Data reside mainly in GPU memoryData reside mainly in GPU memory
• Close to compute powerClose to compute power
• Occasional CPU access for legacy libraries and I/OOccasional CPU access for legacy libraries and I/O

• Customizable automatic data transfers:Customizable automatic data transfers:
• Transfer everything (safe mode)Transfer everything (safe mode)
• Transfer dirty data before kernel executionTransfer dirty data before kernel execution
• Transfer data as being produced (default)Transfer data as being produced (default)

• Multi-process / Multi-thread supportMulti-process / Multi-thread support
• CUDA compatible, Linux alpha version available CUDA compatible, Linux alpha version available

soon.soon.

	Many-core Computing Can compilers and tools do the heavy lifting?
	Outline
	The Energy Behind Parallel Revolution
	My Predictions
	DRAM Bandwidth Trends
	Dense Matrix Multiplication Example (G80)
	Example: Convolution – Base Parallel Code
	Example: convolution using on-chip caching
	Example: Streaming for Reduced Cache Pressure
	Many-core GPU Timing Results
	Multi-core CPU Timing Results
	Application Example: Up-resolution of Video
	Implementation Overview
	Upconversion Results
	Application Example: Depth-Image Based Rendering
	Color-based depth enhancement
	Depth – color bilateral filtering
	Slide 18
	DIBR Time results
	Slide 20
	Gluon – specification information enables robust co-parallelization. (Illinois)
	Gluon Parallelism Exposure Example
	Slide 23
	Slide 24
	Automating Memory Coalescing using Gluon and PDG prediction
	 Memory Layout Transformation Lattice-Boltzmann Method Example
	The best layout is neither SoA nor AoS
	Summary
	Current Challenges
	Slide 30
	Applications Entry Timeframes
	FIR implementation
	Depth propagation
	Illinois Vision Video (ViVid) Framework
	GMAC Heterogeneous Computing Runtime (UPC/Illinois)

