
Many-core Computing Many-core Computing 
Can compilers and tools do the Can compilers and tools do the 

heavy lifting? heavy lifting? 

Wen-mei HwuWen-mei Hwu

FCRP GSRC, Illinois UPCRC, Illinois CUDA CoE, IACAT, IMPACTFCRP GSRC, Illinois UPCRC, Illinois CUDA CoE, IACAT, IMPACT
University of Illinois, Urbana-ChampaignUniversity of Illinois, Urbana-Champaign



MPSoc, August 3, 2009MPSoc, August 3, 200922

OutlineOutline

• Parallel application outlookParallel application outlook

• Heavy lifting in “simple” parallel applicationsHeavy lifting in “simple” parallel applications

• Promising tool strategies and early evidencePromising tool strategies and early evidence

• Challenges and opportunitiesChallenges and opportunities

SoC specific opportnities and challenges?
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The Energy Behind Parallel The Energy Behind Parallel 
RevolutionRevolution

•
GPU in every PC– massive volume and potential impactGPU in every PC– massive volume and potential impact

Courtesy: John Owens

Courtesy:
John Owens3 year shift
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My PredictionsMy Predictions

• Mass market parallel apps will focus on many-core Mass market parallel apps will focus on many-core 
GPUs in the next three to four yearsGPUs in the next three to four years
• NVIDIA GeForce, ATI Radon, Intel LarrabeeNVIDIA GeForce, ATI Radon, Intel Larrabee
• ““Simple” (vector) parallelismSimple” (vector) parallelism
• Dense matrix, single/multi-grids, stencils, etc.Dense matrix, single/multi-grids, stencils, etc.

• Even “simple” parallelism can be challengingEven “simple” parallelism can be challenging
• Memory bandwidth limitationMemory bandwidth limitation
• Portability and scalabilityPortability and scalability
• Heterogeneity and data affinityHeterogeneity and data affinity
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DRAM Bandwidth TrendsDRAM Bandwidth Trends

• Random access BW Random access BW 1.2%1.2% of peak for DDR3-1600,  of peak for DDR3-1600, 0.8% 0.8% for for 
GDDR4-1600 (and falling)GDDR4-1600 (and falling)

• 3D stacking and optical interconnects will unlikely help.3D stacking and optical interconnects will unlikely help.



MPSoc, August 3, 2009MPSoc, August 3, 200966

Dense Matrix Multiplication Dense Matrix Multiplication 
Example (G80)Example (G80)
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Ryoo, et al, PPoPP 2008
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Example: Convolution – Base Parallel Example: Convolution – Base Parallel 
CodeCode

• Each parallel task calculates an output elementEach parallel task calculates an output element

• Figure shows Figure shows 
• 1D convolution with K=5 kernel1D convolution with K=5 kernel

• Calculation of 3 output elementsCalculation of 3 output elements

• Highly parallel but memory bandwidth inefficientHighly parallel but memory bandwidth inefficient
• Uses massive threading to tolerate memory latencyUses massive threading to tolerate memory latency

• Each input element loaded up to K timesEach input element loaded up to K times

Input elements in 
main memory
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Example: convolution using on-chip cachingExample: convolution using on-chip caching

• Output elements calculated from cache contentsOutput elements calculated from cache contents
• Each input element loaded only onceEach input element loaded only once
• Cache pressure – (K-1+N) input elements needed for N Cache pressure – (K-1+N) input elements needed for N 

output elements output elements 
• 7/3 = 2.3,   77/3 = 2.3,   722/3/322 = 5.4,  7 = 5.4,  733 / 3 / 333 = 12 = 12
• For small caches, the benefit can be significantly reduced due For small caches, the benefit can be significantly reduced due 

to the high-ratio of additional elements loaded.to the high-ratio of additional elements loaded.

Input elements first 
loaded into cache
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Example: Streaming for Reduced Example: Streaming for Reduced 
Cache PressureCache Pressure

• Each input element is loaded into cache in turnEach input element is loaded into cache in turn
• Or a (n-1)D slice in nD convolutionOr a (n-1)D slice in nD convolution

• All threads consume that input element All threads consume that input element 
• ““loop skewing” needed to align the consumption of input loop skewing” needed to align the consumption of input 

elementselements
• This stretches the effective size of the on-chip cacheThis stretches the effective size of the on-chip cache
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Many-core GPU Timing Results Many-core GPU Timing Results 

• Time to compute a 3D kTime to compute a 3D k33-kernel convolution on 4 frames of a -kernel convolution on 4 frames of a 
720X560 video sequence720X560 video sequence
• All times are in millisecondsAll times are in milliseconds

• Timed on a Tesla S1070 using one G280 GPUTimed on a Tesla S1070 using one G280 GPU
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Multi-core CPU Timing ResultsMulti-core CPU Timing Results

• Time to compute a 3D kTime to compute a 3D k33-kernel convolution on 4 -kernel convolution on 4 
frames of a 720X560 video sequenceframes of a 720X560 video sequence
• All times are in millisecondsAll times are in milliseconds
• Timed on a Dual-Socket Duo-Core 2.4 GHz Opteron Timed on a Dual-Socket Duo-Core 2.4 GHz Opteron 

system, all four cores usedsystem, all four cores used
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Application Example: Up-resolution Application Example: Up-resolution 
of Videoof Video

Nearest & bilinear interpolation:
   + Fast but low quality

Bicubic interpolation:
   + Higher quality but 
   computational intensive
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Implementation OverviewImplementation Overview

• Step 1: Find the coefficients of the shifted B-Step 1: Find the coefficients of the shifted B-
Splines.Splines.

• Two single pole IIR filters along each dimensionTwo single pole IIR filters along each dimension
• Implemented with recursion along scan linesImplemented with recursion along scan lines

• Step 2: Use the coefficients to interpolate the Step 2: Use the coefficients to interpolate the 
imageimage

• FIR filter for bicubic interpolation implemented as a k=4 2D FIR filter for bicubic interpolation implemented as a k=4 2D 
convolution with (2+16+2)convolution with (2+16+2)22 input tiles with halos input tiles with halos

• Streaming not required due to small 2D kernel, on-chip cache Streaming not required due to small 2D kernel, on-chip cache 
works well as is.works well as is.

• Step 3: DirectX displays from the GPUStep 3: DirectX displays from the GPU
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Upconversion ResultsUpconversion Results

• Parallelize bicubic B-spline interpolationParallelize bicubic B-spline interpolation
• Interpolate QCIF (176x144) to nearly HDTV (1232x1008)Interpolate QCIF (176x144) to nearly HDTV (1232x1008)

• Improved quality over typical bilinear interpolationImproved quality over typical bilinear interpolation

• Improved speed over typical CPU implementationsImproved speed over typical CPU implementations
• Measured 350x speedup over un-optimized CPU codeMeasured 350x speedup over un-optimized CPU code

• Estimated 50x speedup over optimized CPU code from inspection of CPU codeEstimated 50x speedup over optimized CPU code from inspection of CPU code

• Real-time!Real-time!

Hardware IIR FIR

CPU Intel Pentium D 5 ms 1689 ms

GPU nVidia GeForce 
8800 GTX

1 ms 4 ms
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Application Example:  Application Example:  
Depth-Image Based Rendering Depth-Image Based Rendering 

• Three main steps:Three main steps:
• Depth propagationDepth propagation
• Color-based depth enhancementColor-based depth enhancement
• RenderingRendering
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Naïve disocclusion filling Directional disocclusion filling

Before After

Propagated depth Enhanced depth

Color-based depth enhancementColor-based depth enhancement

Depth-color 
bilateral 
filtering

Occlusion 
removal

Directional 
disocclusion 

filling

Propagated depth image
at color view

Depth edge 
enhancement

Enhanced depth image
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Depth – color bilateral filteringDepth – color bilateral filtering
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DIBR Visual ResultsDIBR Visual Results

Left view Right view

Rendered viewMiddle view
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DIBR Time resultsDIBR Time results

• Depth propagation.Depth propagation.
• Not computationally intensive but hard to parallelizeNot computationally intensive but hard to parallelize
• Each pixel in the depth view is be copied to the corresponding Each pixel in the depth view is be copied to the corresponding 

pixel in a different color view.pixel in a different color view.
• 3D-to-2D projection, many-to-one mapping.3D-to-2D projection, many-to-one mapping.
• Atomic functions are used, current work to improve with sort-Atomic functions are used, current work to improve with sort-

scan and binning algorithms.scan and binning algorithms.

• Depth-color bilateral filter (DCBF)Depth-color bilateral filter (DCBF)
• Computational expensive.Computational expensive.
• Similar to 2D convolution. Similar parallelism techniques work Similar to 2D convolution. Similar parallelism techniques work 

wellwell

Hardware Depth propagation DCBF

CPU Intel Core 2 Duo E8400 3.0GHz 38 ms 1041 ms

GPU NVIDIA GeForce 9800 GT 24 ms 14 ms

Speedup 1.6x 74.4x



Some upcoming toolsSome upcoming tools
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Gluon – specification information Gluon – specification information 
enables robust co-parallelization. enables robust co-parallelization. 
(Illinois)(Illinois)
• Developers specify pivotal information at function Developers specify pivotal information at function 

boundariesboundaries
• Heap data object shapes and sizesHeap data object shapes and sizes
• Object access guaranteesObject access guarantees
• Some can be derived from global analyses but others can Some can be derived from global analyses but others can 

be practically infeasible to extract from source code.be practically infeasible to extract from source code.

• Compilers leverage the information toCompilers leverage the information to
• Expose and transform parallelismExpose and transform parallelism
• Perform code and layout transformations for localityPerform code and layout transformations for locality
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Gluon Parallelism Exposure Gluon Parallelism Exposure 
ExampleExample

struct data {
   float x; float y; float z;
};

int cal_bin(struct data *a, 
       struct data *b) {

1. __spec(*a: r, (data)[1]);
2. __spec(*b: r, (data)[1]);
3. __spec(ret_v: range(0,SZ));
 
 int bin = . ; /* use *a and *b*/
 return(bin);
}

int *tpacf(int len, struct data *d) {
4. __spec(d: r, (int)[len]);

    int *hist = malloc(SZ*sizeof(int));
5. __spec(hist: (int)[SZ]);

    for (i=0; i < len; i++) {
       for (j = 0; j < len; j++) {

6.       int bin = cal_bin(&d[i],&d[j]);

7.       hist[bin] += 1;
        }
     }
}

No side effect on 
d elements

hist safe to 
privatize

data layout can 
be done safely
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Automating Memory CoalescingAutomating Memory Coalescing
using Gluon and PDG predictionusing Gluon and PDG prediction
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Structure of Array: [e][z][y][x]Structure of Array: [e][z][y][x]
F(z, y, x, e) = e * |Z| * |Y| * |X|+ z * |Y| * |X| +y * |X| + xF(z, y, x, e) = e * |Z| * |Y| * |X|+ z * |Y| * |X| +y * |X| + x

4X faster than AoS on GTX2804X faster than AoS on GTX280

Memory Layout Transformation Memory Layout Transformation 
Lattice-Boltzmann Method ExampleLattice-Boltzmann Method Example

Array of Structure: [z][y][x][e]Array of Structure: [z][y][x][e]
F(z, y, x, e) = z * |Y| * |X| * |E| + y * |X| * |E| + x * |E| + eF(z, y, x, e) = z * |Y| * |X| * |E| + y * |X| * |E| + x * |E| + e

y=0 y=1

y=0 y=1 y=0 y=1 y=0 y=1
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The best layout is neither SoA The best layout is neither SoA 
nor AoSnor AoS

• Tiled Array of Structure, using lower bits in x and y indices, i.e. xTiled Array of Structure, using lower bits in x and y indices, i.e. x3:03:0 and y and y3:03:0 as  as 
lowest dimensions: [z][ylowest dimensions: [z][y31:431:4][x][x31:431:4][e]][e][y[y3:03:0][x][x3:03:0]]
• F(z, y, x, e) = z * F(z, y, x, e) = z * |Y|/2|Y|/244 *  *  |X|/2|X|/244  * |E| * 2 * |E| * 24 4 * 2* 244 +  + 

yy31:4 31:4 * *  |X|/2|X|/244   * |E| * 2* |E| * 24 4 * 2* 24 4 + x+ x31:4 31:4 * |E| * 2* |E| * 24 4 * 2* 24 4 +   e * 2 +   e * 2 4 4 * 2* 244+ y+ y3:0 3:0 * 2* 24 4 + x+ x3:03:0

• 6.4X faster than AoS, 1.6X faster than SoA on GTX280:6.4X faster than AoS, 1.6X faster than SoA on GTX280:
• Better utilization of data by neighboring cellsBetter utilization of data by neighboring cells

• This is a scalable layout: same layout works for very large objects. This is a scalable layout: same layout works for very large objects. 

y=0 y=1 y=0 y=1 y=0 y=1 y=0
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SummarySummary

• Tools must understand and manage data accessesTools must understand and manage data accesses
• Partnership between developers and toolsPartnership between developers and tools
• Key to “good” parallelismKey to “good” parallelism
• Must balance between developer specification and program analysisMust balance between developer specification and program analysis
• Key to portability and productivityKey to portability and productivity

• ““Simple” many-core programming tools within reachSimple” many-core programming tools within reach
• Memory bandwidth optimizationsMemory bandwidth optimizations
• Parallel execution granularity adjustmentsParallel execution granularity adjustments
• Well-known algorithm changesWell-known algorithm changes
• Heterogeneous computing mapping and data transfersHeterogeneous computing mapping and data transfers
• Haves and Have-Nots of many-core computingHaves and Have-Nots of many-core computing

• http://www.parallel.illinois.edu/http://www.parallel.illinois.edu/
• Courses, seminars, publications, tools, Courses, seminars, publications, tools, 
• UPCRC, CUDA Center of Excellence, IACAT, …UPCRC, CUDA Center of Excellence, IACAT, …

http://www.parallel.illinois.edu/
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Current Challenges Current Challenges 

• Execution ModelsExecution Models
• Currently single kernel execution Currently single kernel execution 
• Moving to multiple kernel steamingMoving to multiple kernel steaming

• Irregular Algorithms and Data StructuresIrregular Algorithms and Data Structures
• Data layout and tiling transformations for sparse Data layout and tiling transformations for sparse 

matrices and spatial data structures need to be matrices and spatial data structures need to be 
developed and automateddeveloped and automated

• Graph algorithms lack conceptual foundation for localityGraph algorithms lack conceptual foundation for locality

• UsabilityUsability
• Tools and interfaces may be still too tedious and Tools and interfaces may be still too tedious and 

confusing for application developersconfusing for application developers



MPSoc, August 3, 2009MPSoc, August 3, 20093030

Thank you! Any questions?
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Applications Entry TimeframesApplications Entry Timeframes

2-core 4-core 8-core 16-core

16-cores
500 GF

32-cores
1TF

64-cores
2 TF

50 GF 100 GF 200 GF

Apps entry 
point (2008)

Many-core

Multi-core

Time

128-cores
4 TF

Apps entry
point (2011)

400 GF

App developers want at 
least 3X-5X for user 
perceived value-add

24-month 
generations

G80 G280
G380

Larrabee
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Cubic interpolation for 1D case

FIR implementationFIR implementation

k = x-  x/R *R
g[x] = c[x-1]w0[k] + c[x]w1[k] + c[x+1]w2[k] + c[x+2]w3k]

Linear interpolation for 1D case
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Depth propagationDepth propagation
• Propagate depth information from the depth camera to each color camera.

• 2D point to 3D ray mapping relation:

•Warping equation: (L. McMillan, 1997)

• Compute new depth values:

A form of 2D “histogram” 
challenging for GPUs
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Illinois Vision Video (ViVid) Illinois Vision Video (ViVid) 
FrameworkFramework

M. Dikman, et al, University of Illinois, Urbana-Champaign

• Constructed by vision experts with parallel programming expertiseConstructed by vision experts with parallel programming expertise

• For video analysis, enhancement, and synthesis appsFor video analysis, enhancement, and synthesis apps

• Python module bindings for seamless CPU/GPU deploymentPython module bindings for seamless CPU/GPU deployment
• MPEG2 Video Decoder and file I/O- C++ (through OpenCV)MPEG2 Video Decoder and file I/O- C++ (through OpenCV)
• 2D Convolution - C++, Python, CUDA2D Convolution - C++, Python, CUDA
• 3D Convolution - C++, Python, CUDA3D Convolution - C++, Python, CUDA
• 2D Fourier Transform - C++, Python, CUDA2D Fourier Transform - C++, Python, CUDA
• 3D Fourier Transform - C++, Python, CUDA3D Fourier Transform - C++, Python, CUDA
• Optical Flow Computation - C++ (through OpenCV)Optical Flow Computation - C++ (through OpenCV)
• Motion Feature Extraction - C++, Python, CUDAMotion Feature Extraction - C++, Python, CUDA
• Pairwise distance between 2 collections of vectors - C++, Python, CUDAPairwise distance between 2 collections of vectors - C++, Python, CUDA

• Domain knowledge capture for optimization and auto-tuningDomain knowledge capture for optimization and auto-tuning
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35

GMAC Heterogeneous Computing GMAC Heterogeneous Computing 
Runtime (UPC/Illinois)Runtime (UPC/Illinois)

• Software-Based Unified CPU/GPU Address SpaceSoftware-Based Unified CPU/GPU Address Space
• Same address/pointer used by CPU and GPUSame address/pointer used by CPU and GPU
• No explicit data transfersNo explicit data transfers

• Data reside mainly in GPU memoryData reside mainly in GPU memory
• Close to compute powerClose to compute power
• Occasional CPU access for legacy libraries and I/OOccasional CPU access for legacy libraries and I/O

• Customizable automatic data transfers:Customizable automatic data transfers:
• Transfer everything (safe mode)Transfer everything (safe mode)
• Transfer dirty data before kernel executionTransfer dirty data before kernel execution
• Transfer data as being produced (default)Transfer data as being produced (default)

• Multi-process / Multi-thread supportMulti-process / Multi-thread support
• CUDA compatible, Linux alpha version available CUDA compatible, Linux alpha version available 

soon.soon.
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