System-Level Exploration for 3D MPSoCs including Optical Networks-on-Chip

Sébastien Le Beux¹, Gabriela Nicolescu¹, Ian O'Connor², Guy Bois¹

¹Ecole Polytechnique de Montréal ² École Centrale de Lyon

Email : gabriela.nicolescu@polymtl.ca

3D Integration Technology

SoC and System-in-Package Convergence

- Higher performance
 - More Moore
- Extended functionalities
 - More Than Moore
 - Equivalent Scaling

3D Integration Technology

Promising paradigm for Heterogeneous Systems

- > Multiple layers \rightarrow multiple technologies
- Functions will use the best technology available
 - \blacktriangleright Ex. computing \rightarrow electronics

 $\text{communication} \rightarrow \text{optics}$

System-Level Exploration for 3D

Research is technology-dominated

- Physical level research
- New devices and architectures are defined
- System-level vision required
 - Cooperation between system-level and physical-level designers

3D MPSoC Including Optical Networks-on-Chip > Architecture defined by extrapolation of 2 planar

Architecture defined by extrapolation of 2 planar approches :

- 1. Optical Network on Chip
- 2. Electrical Network on Chip

3D MPSoC Including Optical Networks-on-Chip > Architecture defined by extrapolation of 2 planar

- Architecture defined by extrapolation of 2 planar approches :
 - 1. Optical Network on Chip (ONoC)

3D MPSoC Including Optical Networks-on-Chip Architecture defined by extrapolation of 2 planar approches :

- **1.** Optical Network on Chip
 - Multiple signals of different wavelengths in the same waveguide
 - No contention, high bandwidth density \rightarrow 20 GB/s
 - Simple, scaleable interconnect
 - Constant latency (<1 ns), function of:
 - Optical index of transmission medium (Si) \rightarrow propagation delay
 - Waveguide length
 - Frequency limited by optical/electrical interfaces
 - Currently 3.2Gb/s optical (32bits@100MHz electrical)
 - Simpler programming models

3D MPSoC Including Optical Networks-on-Chip > Architecture defined by extrapolation of 2 planar

Architecture defined by extrapolation of 2 planar approches :

1. Optical Network on Chip (ONoC)

2. Electrical Network on Chip

3D MPSoC Architecture

Interconnection Strategy (IS) = No of Switches Connected to an ONI Total No. of Switches

System-Level Exploration for 3D MPSoC Integrating ONoC

- Internally Developed Event-Based Simulator
 - adapted for 3D MPSoCs
 - Integrating ONoC models
- Electrical routing resources are characterized by bandwidth capability and latency
- Optical Network Interfaces are modeled at transmitter and receiver level and their latency and bandwidth are considered
- Waveguides and optical switches are considered latency free
- Optical switches are characterized by their resonant wavelength

System-Level Exploration for 3D MPSoC Integrating ONoC

- Configuration parameters
 - The number of electrical layers
 - The number of nodes per layer
 - The percentage of switches connected to an optical network interface

Throughput performances

64 nodes architectures

Random traffic generation

IS = 100%

Throughput performances

64 nodes architectures

Random traffic generation

IS = 100%

Average Transfer Time

Injection rate = 1 (i.e. max)

2 electrical layers

Throughput (2/2)

Intra-layers communication analysis

Inter-layers communication analysis

Mapping Methodology

Mapping Methodology

Exploration for an Image Processing Application

Demosaic Application

18

Exploration Results

Throughput performances

64 nodes architectures

Random traffic generation

IS = 100%

Summary

- > 3D technology facilitates heterogeneous systems integration
- Optical Networks on Chip
 - Very Low Latency (<1ns)
 - High Bandwidth (>20GB)
 - Simplifies many-core scaling and programming model support
- System-level exploration for 3D MPSoC integrating Optical Networks on Chip
 - First prototype of a tool enabling configuration analysis
 - Automatic Application Mapping
- Demosaic example shows 10%-25% throughput improvement