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Introduction

Context: Foreseeable architectural template

Logicically shared, physically distributed memory architecture

Non-uniform memory access times
Caches for programming simplicity
Coherent memory
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Introduction

Context: Efficient exploitation of the available parallelism

Few programs written to exploit parallelism effectively
Often limited to large parallel workloads
But may change with the generalization of multi-core PCs

Popular programming model: Threads
Coordination of execution:

Spin Locks
Mutexes, Semaphores, Read/Write Locks, Barriers, ...
Condition

Limits
Experience shows that these programs are difficult to:

Design, Implement, Debug, Maintain

...and often do not perform or scale well
→ Need for other programming constructs
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Transactional Memory Overview

Transactional Memory (TM)

Transaction API
Several queries must appear as to execute atomically

begin_transaction();
/* All actions taking place here occur in Atomicity
* and in Isolation */

end_transaction();

TM Programming Model ensures
Atomicity:
Intermediate state of the transaction hidden from the
perspective of other processors
Isolation:
Concurrent executing threads cannot interfere with the
executing transaction
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Transactional Memory Overview

Example

Example Description with Locks

Several shared structures, one
lock per structure

Modify a structure s1:
lock(s1.lock);

// modify s1 fields
unlock(s1.lock);

Now suppose we want to do
atomic operations between two
objects

Risk deadlock (or impose a
total order on structures)
Or requires additional locks
on tuples of objects
⇒ New interface

With Transactions

Modify a structure:
begin_transaction();

// modify s1 fields
end_transaction();

Modify two structures atomically:
begin_transaction();

// modify s1 fields
// modify s2 fields

end_transaction();
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Transactional Memory Overview

Types of Transactional Memories

Software Transactional Memory (STM)

Limited hardware support required: only atomic operations
Many do not believe in STM, controversial subject:
Software transactional memory: why is it only a research toy?
[CBM+08]

Hardware Transactional Memory (HTM)

Specific support to transactions in hardware
requires modifications of the whole memory hierarchy [HM93]
No existing machine currently provides such a support
Sun Microsystems Rock multicore was said to be canceled
June 15th, 2009a

aSun did not confirm or infirm officially
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Transactional Memory Overview

HTM Systems

General Characteristics & Problems relative to HTM Systems
Granularity of accesses: cache line
Need to detected conflicting accesses to a variable:
⇒ Requires tracking the read/write accesses to a line
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Transactional Memory Overview

HTM Systems

General Characteristics & Problems relative to HTM Systems
Transaction can abort if there is a conflict:
i.e. 2 transactions on same line including a write
⇒ Requires storing both old and new values

Speculated data (Data that is computed but not yet
committed to memory) have to be stored somewhere
⇒ HTM sets can overflow (finite capacity)

Not so simple architectural support within memory and caches
Cache-coherence protocol dependent

Very challenging to define and build a working system
F. Pétrot & Q. Meunier (TIMA Lab) TM in MPSoCs MPSoC’09 10 / 25



Transactional Memory Overview

Classification of HTM Systems

Main Criteria
Conflict Detection: when to detect conflicts?

Eager: as soon as two concurrent transactions attempt to
access the same line
Lazy: at commit time

Version Management: where to store old and new values?
Eager: Store the new values in place and the old ones in a log
Fast commit
Lazy: Leaves old values in memory and log the new ones
Fast abort

Conflict Resolution: what to do when a conflict is detected?
Eager: Stall/Abort the requester(s)
⇒ Stalling the requester also requires to be able to break
potential deadlock cycles by making some processors abort
Lazy: Abort the committer
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Transactional Memory Overview

Main Existing HTM Systems Implementations

Main Existing HTM Systems
Short Name Full Name Reference
LogTM Log Based Transactional Memorya [MBM+06a]
TCC Transactional Coherence and Consistency [HCW+04]
VTM Virtualizing Transactional Memory [RHL05]
UTM Unbounded Transactional Memory [AAK+05]
LTM Large Transactional Memory [AAK+05]
Bulk - [CTTC06]

aand its variants: LogTM-SE [YBM+07], TokenTM [BGH+08] and LogTM-VSE [SVG+08]

Standard Design Space Choices and Positioning
LL: Lazy Conflict Detection, Lazy Version Management, committer wins
EL: Eager Conflict Detection, Lazy Version Management, requester wins
EE: Eager Conflict Detection, Eager Version Management, requester stalls

LogTM → EE TCC → LL VTM → EL
UTM → EE Bulk → LL LTM → EL
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MPSoC Specific TM Implementations?
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MPSoC Specific TM Implementations?

Design Choices & Restrictions for MPSoC

Design Choices: Simplicity
Use of simple RISC processors, e.g. Sparc V8, Mips 4K

Write-through, Direct-mapped caches

Physical address space (no MMU)

Other Design Choices: Still simplicity
Eager Conflict Detection, Eager Version Management, Resolution scheme
based on stalling the requester

Write-Through Invalidate cache coherence protocol

Flat transaction nesting semantic

Restrictions: Always simplicity
One thread per processor, each thread being pinned on a processor

OS calls and I/O accesses forbidden inside transactions
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MPSoC Specific TM Implementations?

Architecture and OS Modifications

Architecture Modifications
API

begin_transaction() and end_transaction():
Processor configuration to perform transactional accesses
store_log_address(address):
Configuration of a specific register in cache

On processors
Addition of a shadow register file in processor, for aborts
New instructions or new semantics on existing ones:
e.g. rdasr on Sparc or mtc0 on Mips32

On caches and memories
Read and Write sets tracked with R/W bits associated to each
cache and memory line
Value log: Data Cache
Additions to the cache coherency protocol and the
interconnect protocol
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MPSoC Specific TM Implementations?

Status

LightTM: HTM System under design
Cycle Accurate Bit Accurate modeling of the whole system

2-32 Sparc V8, Abstract NoC Interconnect, modified SoCLib models

Kernels and Splash 2 (parallel workloads) benchmarks

Preliminary results

Run times vs Number of processors for Kernel Run times for Splash-2 benchmarks, 16 procs
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Wrap-up

Wrap-up

Transactional Memory
Concept introduced more than 15 years ago[HM93]

Currently generating a lot of research
In Computer Architecture and also Parallel Programming conferences

Proved to be pretty efficient

Also proved to be quite complex and costly!

Is it useful for MPSoC?
More and more programmable IPs in High End Consumer MPSoC

Need of a simple shared memory parallel programming paradigm

But quite complex to implement and not RT friendly

May be (part of) a solution
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A8: Multi-core Platforms
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