
Design and Use of Transactional Memory in
MPSoCs

Frédéric Pétrot
Quentin Meunier

System-Level Synthesis Group
TIMA Laboratory

46, Av Félix Viallet, 38031 Grenoble, France

MPSoC’09

F. Pétrot & Q. Meunier (TIMA Lab) TM in MPSoCs MPSoC’09 1 / 25



Introduction

Context: Foreseeable architectural template

Logicically shared, physically distributed memory architecture

Non-uniform memory access times
Caches for programming simplicity
Coherent memory

F. Pétrot & Q. Meunier (TIMA Lab) TM in MPSoCs MPSoC’09 2 / 25



Introduction

Context: Efficient exploitation of the available parallelism

Few programs written to exploit parallelism effectively
Often limited to large parallel workloads
But may change with the generalization of multi-core PCs

Popular programming model: Threads
Coordination of execution:

Spin Locks
Mutexes, Semaphores, Read/Write Locks, Barriers, ...
Condition

Limits
Experience shows that these programs are difficult to:

Design, Implement, Debug, Maintain

...and often do not perform or scale well
→ Need for other programming constructs

F. Pétrot & Q. Meunier (TIMA Lab) TM in MPSoCs MPSoC’09 3 / 25



Introduction

Outline

1 Introduction

2 Transactional Memory Overview

3 MPSoC Specific TM Implementations?

4 Wrap-up

F. Pétrot & Q. Meunier (TIMA Lab) TM in MPSoCs MPSoC’09 4 / 25



Transactional Memory Overview

Outline

1 Introduction

2 Transactional Memory Overview

3 MPSoC Specific TM Implementations?

4 Wrap-up

F. Pétrot & Q. Meunier (TIMA Lab) TM in MPSoCs MPSoC’09 5 / 25



Transactional Memory Overview

Transactional Memory (TM)

Transaction API
Several queries must appear as to execute atomically

begin_transaction();
/* All actions taking place here occur in Atomicity
* and in Isolation */

end_transaction();

TM Programming Model ensures
Atomicity:
Intermediate state of the transaction hidden from the
perspective of other processors
Isolation:
Concurrent executing threads cannot interfere with the
executing transaction

F. Pétrot & Q. Meunier (TIMA Lab) TM in MPSoCs MPSoC’09 6 / 25



Transactional Memory Overview

Example

Example Description with Locks

Several shared structures, one
lock per structure

Modify a structure s1:
lock(s1.lock);

// modify s1 fields
unlock(s1.lock);

Now suppose we want to do
atomic operations between two
objects

Risk deadlock (or impose a
total order on structures)
Or requires additional locks
on tuples of objects
⇒ New interface

With Transactions

Modify a structure:
begin_transaction();

// modify s1 fields
end_transaction();

Modify two structures atomically:
begin_transaction();

// modify s1 fields
// modify s2 fields

end_transaction();

F. Pétrot & Q. Meunier (TIMA Lab) TM in MPSoCs MPSoC’09 7 / 25



Transactional Memory Overview

Example

Example Description with Locks

Several shared structures, one
lock per structure

Modify a structure s1:
lock(s1.lock);

// modify s1 fields
unlock(s1.lock);

Now suppose we want to do
atomic operations between two
objects

Risk deadlock (or impose a
total order on structures)
Or requires additional locks
on tuples of objects
⇒ New interface

With Transactions

Modify a structure:
begin_transaction();

// modify s1 fields
end_transaction();

Modify two structures atomically:
begin_transaction();

// modify s1 fields
// modify s2 fields

end_transaction();

F. Pétrot & Q. Meunier (TIMA Lab) TM in MPSoCs MPSoC’09 7 / 25



Transactional Memory Overview

Example

Example Description with Locks

Several shared structures, one
lock per structure

Modify a structure s1:
lock(s1.lock);

// modify s1 fields
unlock(s1.lock);

Now suppose we want to do
atomic operations between two
objects

Risk deadlock (or impose a
total order on structures)
Or requires additional locks
on tuples of objects
⇒ New interface

With Transactions

Modify a structure:
begin_transaction();

// modify s1 fields
end_transaction();

Modify two structures atomically:
begin_transaction();

// modify s1 fields
// modify s2 fields

end_transaction();

F. Pétrot & Q. Meunier (TIMA Lab) TM in MPSoCs MPSoC’09 7 / 25



Transactional Memory Overview

Example

Example Description with Locks

Several shared structures, one
lock per structure

Modify a structure s1:
lock(s1.lock);

// modify s1 fields
unlock(s1.lock);

Now suppose we want to do
atomic operations between two
objects

Risk deadlock (or impose a
total order on structures)
Or requires additional locks
on tuples of objects
⇒ New interface

With Transactions

Modify a structure:
begin_transaction();

// modify s1 fields
end_transaction();

Modify two structures atomically:
begin_transaction();

// modify s1 fields
// modify s2 fields

end_transaction();

F. Pétrot & Q. Meunier (TIMA Lab) TM in MPSoCs MPSoC’09 7 / 25



Transactional Memory Overview

Example

Example Description with Locks

Several shared structures, one
lock per structure

Modify a structure s1:
lock(s1.lock);

// modify s1 fields
unlock(s1.lock);

Now suppose we want to do
atomic operations between two
objects

Risk deadlock (or impose a
total order on structures)
Or requires additional locks
on tuples of objects
⇒ New interface

With Transactions

Modify a structure:
begin_transaction();

// modify s1 fields
end_transaction();

Modify two structures atomically:
begin_transaction();

// modify s1 fields
// modify s2 fields

end_transaction();

F. Pétrot & Q. Meunier (TIMA Lab) TM in MPSoCs MPSoC’09 7 / 25



Transactional Memory Overview

Example

Example Description with Locks

Several shared structures, one
lock per structure

Modify a structure s1:
lock(s1.lock);

// modify s1 fields
unlock(s1.lock);

Now suppose we want to do
atomic operations between two
objects

Risk deadlock (or impose a
total order on structures)
Or requires additional locks
on tuples of objects
⇒ New interface

With Transactions

Modify a structure:
begin_transaction();

// modify s1 fields
end_transaction();

Modify two structures atomically:
begin_transaction();

// modify s1 fields
// modify s2 fields

end_transaction();

F. Pétrot & Q. Meunier (TIMA Lab) TM in MPSoCs MPSoC’09 7 / 25



Transactional Memory Overview

Example

Example Description with Locks

Several shared structures, one
lock per structure

Modify a structure s1:
lock(s1.lock);

// modify s1 fields
unlock(s1.lock);

Now suppose we want to do
atomic operations between two
objects

Risk deadlock (or impose a
total order on structures)
Or requires additional locks
on tuples of objects
⇒ New interface

With Transactions
Modify a structure:

begin_transaction();
// modify s1 fields

end_transaction();

Modify two structures atomically:
begin_transaction();

// modify s1 fields
// modify s2 fields

end_transaction();

F. Pétrot & Q. Meunier (TIMA Lab) TM in MPSoCs MPSoC’09 7 / 25



Transactional Memory Overview

Example

Example Description with Locks

Several shared structures, one
lock per structure

Modify a structure s1:
lock(s1.lock);

// modify s1 fields
unlock(s1.lock);

Now suppose we want to do
atomic operations between two
objects

Risk deadlock (or impose a
total order on structures)
Or requires additional locks
on tuples of objects
⇒ New interface

With Transactions
Modify a structure:

begin_transaction();
// modify s1 fields

end_transaction();

Modify two structures atomically:
begin_transaction();

// modify s1 fields
// modify s2 fields

end_transaction();

F. Pétrot & Q. Meunier (TIMA Lab) TM in MPSoCs MPSoC’09 7 / 25



Transactional Memory Overview

Types of Transactional Memories

Software Transactional Memory (STM)

Limited hardware support required: only atomic operations
Many do not believe in STM, controversial subject:
Software transactional memory: why is it only a research toy?
[CBM+08]

Hardware Transactional Memory (HTM)

Specific support to transactions in hardware
requires modifications of the whole memory hierarchy [HM93]
No existing machine currently provides such a support
Sun Microsystems Rock multicore was said to be canceled
June 15th, 2009a

aSun did not confirm or infirm officially

F. Pétrot & Q. Meunier (TIMA Lab) TM in MPSoCs MPSoC’09 8 / 25



Transactional Memory Overview

HTM Systems

General Characteristics & Problems relative to HTM Systems
Granularity of accesses: cache line
Need to detected conflicting accesses to a variable:
⇒ Requires tracking the read/write accesses to a line

F. Pétrot & Q. Meunier (TIMA Lab) TM in MPSoCs MPSoC’09 9 / 25



Transactional Memory Overview

HTM Systems

General Characteristics & Problems relative to HTM Systems
Transaction can abort if there is a conflict:
i.e. 2 transactions on same line including a write
⇒ Requires storing both old and new values

Speculated data (Data that is computed but not yet
committed to memory) have to be stored somewhere
⇒ HTM sets can overflow (finite capacity)

Not so simple architectural support within memory and caches
Cache-coherence protocol dependent

Very challenging to define and build a working system
F. Pétrot & Q. Meunier (TIMA Lab) TM in MPSoCs MPSoC’09 10 / 25



Transactional Memory Overview

Classification of HTM Systems

Main Criteria
Conflict Detection: when to detect conflicts?

Eager: as soon as two concurrent transactions attempt to
access the same line
Lazy: at commit time

Version Management: where to store old and new values?
Eager: Store the new values in place and the old ones in a log
Fast commit
Lazy: Leaves old values in memory and log the new ones
Fast abort

Conflict Resolution: what to do when a conflict is detected?
Eager: Stall/Abort the requester(s)
⇒ Stalling the requester also requires to be able to break
potential deadlock cycles by making some processors abort
Lazy: Abort the committer

F. Pétrot & Q. Meunier (TIMA Lab) TM in MPSoCs MPSoC’09 11 / 25



Transactional Memory Overview

Main Existing HTM Systems Implementations

Main Existing HTM Systems
Short Name Full Name Reference
LogTM Log Based Transactional Memorya [MBM+06a]
TCC Transactional Coherence and Consistency [HCW+04]
VTM Virtualizing Transactional Memory [RHL05]
UTM Unbounded Transactional Memory [AAK+05]
LTM Large Transactional Memory [AAK+05]
Bulk - [CTTC06]

aand its variants: LogTM-SE [YBM+07], TokenTM [BGH+08] and LogTM-VSE [SVG+08]

Standard Design Space Choices and Positioning
LL: Lazy Conflict Detection, Lazy Version Management, committer wins
EL: Eager Conflict Detection, Lazy Version Management, requester wins
EE: Eager Conflict Detection, Eager Version Management, requester stalls

LogTM → EE TCC → LL VTM → EL
UTM → EE Bulk → LL LTM → EL

F. Pétrot & Q. Meunier (TIMA Lab) TM in MPSoCs MPSoC’09 12 / 25



MPSoC Specific TM Implementations?

Outline

1 Introduction

2 Transactional Memory Overview

3 MPSoC Specific TM Implementations?

4 Wrap-up

F. Pétrot & Q. Meunier (TIMA Lab) TM in MPSoCs MPSoC’09 13 / 25



MPSoC Specific TM Implementations?

Design Choices & Restrictions for MPSoC

Design Choices: Simplicity
Use of simple RISC processors, e.g. Sparc V8, Mips 4K

Write-through, Direct-mapped caches

Physical address space (no MMU)

Other Design Choices: Still simplicity
Eager Conflict Detection, Eager Version Management, Resolution scheme
based on stalling the requester

Write-Through Invalidate cache coherence protocol

Flat transaction nesting semantic

Restrictions: Always simplicity
One thread per processor, each thread being pinned on a processor

OS calls and I/O accesses forbidden inside transactions

F. Pétrot & Q. Meunier (TIMA Lab) TM in MPSoCs MPSoC’09 14 / 25



MPSoC Specific TM Implementations?

Architecture and OS Modifications

Architecture Modifications
API

begin_transaction() and end_transaction():
Processor configuration to perform transactional accesses
store_log_address(address):
Configuration of a specific register in cache

On processors
Addition of a shadow register file in processor, for aborts
New instructions or new semantics on existing ones:
e.g. rdasr on Sparc or mtc0 on Mips32

On caches and memories
Read and Write sets tracked with R/W bits associated to each
cache and memory line
Value log: Data Cache
Additions to the cache coherency protocol and the
interconnect protocol

F. Pétrot & Q. Meunier (TIMA Lab) TM in MPSoCs MPSoC’09 15 / 25



MPSoC Specific TM Implementations?

Status

LightTM: HTM System under design
Cycle Accurate Bit Accurate modeling of the whole system

2-32 Sparc V8, Abstract NoC Interconnect, modified SoCLib models

Kernels and Splash 2 (parallel workloads) benchmarks

Preliminary results

Run times vs Number of processors for Kernel Run times for Splash-2 benchmarks, 16 procs

F. Pétrot & Q. Meunier (TIMA Lab) TM in MPSoCs MPSoC’09 16 / 25



Wrap-up

Wrap-up

Transactional Memory
Concept introduced more than 15 years ago[HM93]

Currently generating a lot of research
In Computer Architecture and also Parallel Programming conferences

Proved to be pretty efficient

Also proved to be quite complex and costly!

Is it useful for MPSoC?
More and more programmable IPs in High End Consumer MPSoC

Need of a simple shared memory parallel programming paradigm

But quite complex to implement and not RT friendly

May be (part of) a solution

F. Pétrot & Q. Meunier (TIMA Lab) TM in MPSoCs MPSoC’09 17 / 25



A8: Multi-core Platforms

F. Pétrot & Q. Meunier (TIMA Lab) TM in MPSoCs MPSoC’09 18 / 25



Design and Use of Transactional Memory in
MPSoCs

Frédéric Pétrot
Quentin Meunier

System-Level Synthesis Group
TIMA Laboratory

46, Av Félix Viallet, 38031 Grenoble, France

MPSoC’09

F. Pétrot & Q. Meunier (TIMA Lab) TM in MPSoCs MPSoC’09 18 / 25



References

References I

C. Scott Ananian, Krste Asanovic, Bradley C. Kuszmaul,
Charles E. Leiserson, and Sean Lie, Unbounded transactional
memory, Proc. 11th International Conference on
High-Performance Computer Architecture (11th HPCA’05)
(San Francisco, CA, USA), IEEE Computer Society, February
2005, pp. 316–327.

Jayaram Bobba, Neelam Goyal, Mark D. Hill, Michael M.
Swift, and David A. Wood, TokenTM: Efficient execution of
large transactions with hardware transactional memory, Proc.
35th International Symposium on Computer Architecture (35th
ISCA’08) (Beijing), ACM SIGARCH, June 2008.

F. Pétrot & Q. Meunier (TIMA Lab) TM in MPSoCs MPSoC’09 19 / 25



References

References II

Jayaram Bobba, Kevin E. Moore, Haris Volos, Luke Yen,
Mark D. Hill, Michael M. Swift, and David A. Wood,
Performance pathologies in hardware transactional memory,
Proc. 34th International Symposium on Computer Architecture
(34th ISCA’07) (San Diego, California, USA), ACM SIGARCH,
June 2007, pp. 81–91.

Calin Cascaval, Colin Blundell, Maged Michael, Harold W.
Cain, Peng Wu, Stefanie Chiras, and Siddhartha Chatterjee,
Software transactional memory: why is it only a research toy?,
ACM Queue: Tomorrow’s Computing Today 6 (2008), no. 5,
46–58.

Luis Ceze, James Tuck, Josep Torrellas, and Calin Cascaval,
Bulk disambiguation of speculative threads in multiprocessors,
ISCA, IEEE Computer Society, 2006, pp. 227–238.

F. Pétrot & Q. Meunier (TIMA Lab) TM in MPSoCs MPSoC’09 20 / 25



References

References III

Fraser and Harris, Concurrent programming without locks,
ACMTCS: ACM Transactions on Computer Systems 25 (2007).

Lance Hammond, Brian D. Carlstrom, Vicky Wong, Michael K.
Chen, Christos Kozyrakis, and Kunle Olukotun, Transactional
coherence and consistency: Simplifying parallel hardware and
software, IEEE Micro 24 (2004), no. 6, 92–103.

Maurice Herlihy and J. Eliot B. Moss, Transactional memory:
Architectural support for lock-free data structures, ISCA, 1993,
pp. 289–300.

F. Pétrot & Q. Meunier (TIMA Lab) TM in MPSoCs MPSoC’09 21 / 25



References

References IV

Sudheendra Hangal, Durgam Vahia, Chaiyasit Manovit,
Juin-Yeu Joseph Lu, and Sridhar Narayanan, TSOtool: A
program for verifying memory systems using the memory
consistency model, Proc. 31th Ann. Intl Symp. on Computer
Architecture (31th ISCA’04), ACM Computer Architecture
News (CAN) (Munich, Germany), ACM SIGARCH / IEEE
Computer Society, June 2004, Published as Proc. 31th Ann.
Intl Symp. on Computer Architecture (31th ISCA’04), ACM
Computer Architecture News (CAN), volume 32, number ?,
pp. 114–123.

Kevin E. Moore, Jayaram Bobba, Michelle J. Moravan,
Mark D. Hill, and David A. Wood, LogTM: Log-based
transactional memory, Proceedings of the 12th International
Symposium on High-Performance Computer Architecture, IEEE
Computer Society, February 2006, pp. 254–265.

F. Pétrot & Q. Meunier (TIMA Lab) TM in MPSoCs MPSoC’09 22 / 25



References

References V

Michelle J. Moravan, Jayaram Bobba, Kevin E. Moore, Luke
Yen, Mark D. Hill, Ben Liblit, Michael M. Swift, and David A.
Wood, Supporting nested transactional memory in logTM,
Proceedings of the 12th International Conference on
Architectural Support for Programming Languages and
Operating Systems, ASPLOS 2006, San Jose, CA, USA,
October 21-25, 2006 (John Paul Shen and Margaret Martonosi,
eds.), ACM, 2006, pp. 359–370.

Chaiyasit Manovit, Sudheendra Hangal, Hassan Chafi, Austen
McDonald, Christos Kozyrakis, and Kunle Olukotun, Testing
implementations of transactional memory, Proceedings of the
15th International Conference on Parallel Architecture and
Compilation Techniques (15th PACT’06) (Seattle, Washington,
USA) (Erik Altman, Kevin Skadron, and Benjamin G. Zorn,
eds.), ACM, September 2006, pp. 134–143.

F. Pétrot & Q. Meunier (TIMA Lab) TM in MPSoCs MPSoC’09 23 / 25



References

References VI

Ravi Rajwar, Maurice Herlihy, and Konrad K. Lai, Virtualizing
transactional memory, ISCA, IEEE Computer Society, 2005,
pp. 494–505.

Bratin Saha, Ali-Reza Adl-Tabatabai, and Quinn Jacobson,
Architectural support for software transactional memory,
MICRO, IEEE Computer Society, 2006, pp. 185–196.

Daniel J. Sorin, Manoj Plakal, Mark D. Hill, Anne E. Condon,
Milo M. Martin, and David A. Wood, Specifying and verifying
a broadcast and a multicast snooping cache coherence
protocol, Technical Report 1412, Univ. of Wisconsin Computer
Sciences, Madison, WI, March 2000.

M.M. Swift, H. Volos, N. Goyal, L. Yen, M.D. Hill, and D.A.
Wood, OS Support for Virtualizing Hardware Transactional
Memory, 2008.

F. Pétrot & Q. Meunier (TIMA Lab) TM in MPSoCs MPSoC’09 24 / 25



References

References VII

Sasa Tomic, Adrián Cristal, Osman S. Unsal, and Mateo
Valero, Hardware transactional memory with operating system
support, HTMOS, Euro-Par Workshops (Luc Bougé, Martti
Forsell, Jesper Larsson Träff, Achim Streit, Wolfgang Ziegler,
Michael Alexander, and Stephen Childs, eds.), Lecture Notes in
Computer Science, vol. 4854, Springer, 2007, pp. 8–17.

Luke Yen, Jayaram Bobba, Michael R. Marty, Kevin E. Moore,
Haris Volos, Mark D. Hill, Michael M. Swift, and David A.
Wood, LogTM-SE: Decoupling hardware transactional memory
from caches, HPCA, IEEE Computer Society, 2007,
pp. 261–272.

F. Pétrot & Q. Meunier (TIMA Lab) TM in MPSoCs MPSoC’09 25 / 25


	Introduction
	Transactional Memory Overview
	MPSoC Specific TM Implementations?
	Wrap-up
	
	References

