
MPSoC 2009 1

Real-Time Operating Systems for 
MPSoCs

Hiroyuki Tomiyama
Graduate School of Information Science

Nagoya University
http://member.acm.org/~hiroyuki

MPSoC 2009 2

Contributors
Hiroaki Takada

Director and Professor
Center for Embedded Computing Systems
Graduate School of Information Science
Nagoya University

Shinya Honda
Assistant Professor
Center for Embedded Computing Systems
Graduate School of Information Science
Nagoya University



MPSoC 2009 3

Outline
Why Multicore Embedded Systems?
Types of RTOS and Real-Time Issues
RTOSes from TOPPERS Project
Concluding Remarks

MPSoC 2009 4

Why Need Multiprocessors?
Mainly two reasons; one negative, one positive
To achieve both high performance and low power 
simultaneously

To be honest, software programmers DO NOT want to use 
multiprocessors

They want a single processor with high-performance and low-power
But, high-performance processors are inevitably less power-
efficient (e.g., lower MIPS/Watt) than low-performance ones 

To achieve different requirements (functionality, 
performance, real-time response, reliability, etc.) 
simultaneously

Contemporary embedded systems are complex; consisting of 
a set of sub-systems with their own requirements

Ex: Cell phones, automotive electronic systems, NC machines



MPSoC 2009 5

Different Requirements for Cell Phone 
SoCs

Applications in cellular phones
Telephone, video phone, e-mail, web browser, digital still camera, video camera, 
TV, music player, game machine, e-money, etc.

Each application has its own requirements such as throughput, real-time 
responsiveness, reliability, etc.
Renesas SH-Mobile G1

Main control, user interface, java, etc: rich functionality, loose real-time response
Baseband communication: hard real-time response
Media processing: high computational power, soft real-time response

SH4-DSP
(ITRON)

ARM
(Linux)

ARM
(ITRON)

SDRAM SDRAM
M
edia Bridge

System
 Bridge

PeripheralsMedia 
Accelerators

WCDMA/GSM
Basebands

PeripheralsMedia 
Accelerators

WCDMA/GSM
Basebands

Peripherals
Media 

Accelerators
WCDMA/GSM
Basebands

MPSoC 2009 6

Car Navigation System
Multicore ECUs (electronic control units)
Two different OSes in cooperation with each other

RTOS for body control and power-train subsystems
Rich OS for multimedia subsystem

Power train
subsystem

Body control
subsystem

Multimedia subsystem
(including navigation)

Multiprocessors

RTOS Media-OS

Media
Applications

Control
Applications

Control
Applications

Control
Applications

Media
Applications

Media
Applications



MPSoC 2009 7

Types of RTOS and Real-Time Issues

MPSoC 2009 8

Broad Classification
UP-RTOS (Uni-Processor RTOS)

Designed for single-processor real-time systems, still can be used for 
multiprocessor systems

MP-RTOS (Multi-Processor RTOS) 
Designed for multiprocessor real-time systems

SMP-RTOS (Symmetric Multi-Processor RTOS)
AMP-RTOS (Asymmetric Multi-Processor RTOS)



MPSoC 2009 9

Use of UP-RTOS in Multiprocessors
UP-RTOS runs on each processor
Intra-processor communication is realized by RTOS API (e.g., 
mail boxes, data queues, etc.) while inter-processor 
communication is realized at an application-software level (using 
middleware).
Problems

Dependency between task development and task allocation
Run-time task migration is difficult (should be realized at application level)

Moving Task12
from Core1 to Core2

OS API

Appl-level communication Rewriting needed

middleware middleware

MPSoC 2009 10

Merits of MP-RTOS
Provide same API for both inter-processor and intra-
processor communication

Application programmers do not have to be aware of task 
allocation
Exploration of task allocation is easy

Moving Task12
from Core1 to Core2

No rewriting needed



MPSoC 2009 11

Inter-Processor System Calls
Two implementation approaches

Direct manipulation of TCBs
Employed by all SMP-RTOSes and many AMP-RTOSes

Remote calls

MPSoC 2009 12

Merits of MP-RTOS
Run-time task migration (SMP-RTOS only)

Allocate tasks onto processors at run-time in order to maximize the 
throughput depending on load variation.
Running tasks can be migrated

Important: Run-time task migration often degrades real-time 
responsiveness (worst-case response time of tasks and 
interrupts).

We need to understand how MP-RTOS behaves.

Run-time allocation of 
tasks onto processors

Task set 

Running task 



MPSoC 2009 13

SMP-RTOS and AMP-RTOS
SMP-RTOS: Symmetric Multi-Processor RTOS

Dynamic task allocation
Well suited to SMP architectures with homogeneous processors and
coherent cache
Most commercial MP-RTOSes

AMP-RTOS: Asymmetric Multi-Processor RTOS
Static task allocation
Suited to both SMP and AMP architectures

SMP-RTOS AMP-RTOS
Ready queue

MPSoC 2009 14

SMP-RTOS: Task Scheduling
Typically, a single ready queue shared by all 
processors
The first N tasks in the ready queue are dispatched to 
N processors
Many SMP-RTOSes provide ability to statically allocate 
tasks to specific processors

Task scheduling becomes a little complicated

Ready queue



MPSoC 2009 15

Some Important Issues in SMT-RTOS
Dynamic task allocation / migration

Needs performance overhead
Moreover, often degrades the cache performance

especially, in case currently-running tasks are migrated
Tasks should remain on the same processors as long as possible
Tradeoff between average- and worst-case performance

Priority inversion
Complicates analysis and guarantee of schedulability
Occurs very easily in SMP systems
Tradeoff with task migration

Resource conflicts inside SMT-RTOS
A number of data structures inside SMT-RTOS are shared by tasks
Accesses to the shared data structures may cause conflicts

MPSoC 2009 16

Priority Inversion with Static Tasks
Many SMP-RTOSes have ability to fixedly allocate tasks to 
specific processors.
What should RTOS do in the following scenario?

Assume Tasks B and C are running
Both tasks are mobile over processors

Now, Task A which is fixed to Processor 1 arrives
Large overhead necessary if we strictly follow the task priorities

Save the context of Task C in memory, and put the task back in ready queue
Migrate Task B from Processor 1 to Processor 2
Dispatch Task A to Processor 1

Fixed to Proc1
(high priority)

Mobile
(mid priority)

Mobile
(low priority)



MPSoC 2009 17

Some Important Issues in SMT-RTOS
Dynamic task allocation / migration

Needs performance overhead
Moreover, often degrades the cache performance

especially, in case currently-running tasks are migrated
Tasks should remain on the same processors as long as possible

Priority inversion
Complicates analysis and guarantee of schedulability
Occurs very easily in SMT systems
Tradeoff with task migration

Resource conflicts inside SMT-RTOS
A number of data structures inside SMT-RTOS are shared by tasks
Accesses to the shared data structures may cause conflicts

MPSoC 2009 18

Resource Conflicts inside SMP-RTOS
Minimization of interferences among tasks is important 
in order to guarantee real-time responsiveness of the 
tasks
Inter-task interferences include

communications/synchronizations
preemptions
resource conflicts

There exist a number of shared resources not only in 
hardware (such as memories and buses) but also 
inside RTOS.
Example: Ready queue

one of the most important, frequently-accessed resources in 
RTOS



MPSoC 2009 19

Ready Queue in SMP-RTOS
Ready queue

Manipulated by many system calls
Accesses to ready queue must be mutually excluded

Typical SMP-RTOSes have a single ready queue
Scenario

Task 1 completes its execution
At the same time, Task 2 goes into waiting state for synchronization with an external device
Both Tasks 1 and 2 need to be removed from the ready queue. Conflict!

Note that this conflict happens even if Tasks 1 and 2 are independent of each other
This does not happen in AMP-RTOS with a ready queue for each processor

PE1

RTOS

PE2

Task1

Task1 Task2 Task3 Task4

Running

Ready
Queue

Task2

MPSoC 2009 20

AMP-RTOS: Task Scheduling
Multiple ready queues; one for each processor
On each processor, the highest-priority task in ready queue is 
executed

In the same way as UP-RTOS. Independent among processors
Uniprocessor-based schedulability analysis can be applied if no 
inter-processor communication exists

This is not the case for SMP-RTOS even if all tasks are statically 
allocated to specific processors

Ready queue



MPSoC 2009 21

SMP-RTOS: Pros and Cons
High throughput (average performance) via load 
balancing
Easy software development, high reusability of 
software
Expensive hardware required

Coherent cache, fast interconnection network, etc.
Difficult schedulability analysis
Degraded worst-case responsiveness

More shared resources, more possibilities of 
resource conflicts

MPSoC 2009 22

AMP-RTOS: Pros and Cons
Lower throughput (average performance)

Dynamic task allocation needs to be implemented at an application level
More work at design time

Task allocation
Higher performance expected via application-specific 
customization
Less expensive hardware
Easier schedulability analysis
Better worst-case responsiveness

AMP-RTOS is a better choice than SMP-RTOS for hard real-
time systems



MPSoC 2009 23

RTOSes from TOPPERS Project

MPSoC 2009 24

RTOSes from TOPPERS Project
TOPPERS/JSP Kernel

Designed for uniprocessor systems
TOPPERS/SMP Kernel

Designed for symmetric multiprocessor systems
Run-time task allocation

TOPPERS/FDMP Kernel
Designed for asymmetric multiprocessors
Static task allocation

TOPPERS/FMP Kernel
Designed for asymmetric multiprocessors
Static task allocation with limited task migration

All of them
conform to ITRON 4.0 Standard Profile
are (or will be) released as open-source software from TOPPERS Project



MPSoC 2009 25

What’s ITRON?
A standardized specification of RTOS kernel for small-
to mid-scale embedded systems.
Developed and standardized in Japan for >20 years

Prof. Takada has been playing the central role
ITRON is not a software product but a specification.

Defines a set of API functions (service calls)
There exist a number of ITRON implementations in market

Most popular RTOS specification in Japan
Approximately 50% of embedded systems
Especially in consumer electronics.

Several profiles to cover different application domains
Standard Profile, Automotive Profile, etc.

MPSoC 2009 26

Task and Memory Management in 
ITRON Standard Profile

Tasks (and other kernel objects such as semaphores and mail 
boxes) are statically defined and instantiated at design time

No dynamic loading at run time
Single memory space shared by all of application tasks and 
RTOS

No virtual memory
Priority-based preemptive scheduling

ITRON Kernel

Task A

Task B

Task C

Cross-
Compile & Link

Object Code for 
Target CPU



MPSoC 2009 27

TOPPERS Project
Not-for-Profit Organization

Founded by Professor Takada in September 2003
http://www.toppers.jp/
>200 members (universities, companies, and individual 
volunteers)
Develop and release open-source software for embedded 
systems

RTOSes, middleware (e.g., FlaxRay/CAN communication middleware), 
and education materials

TOPPERS License
Can be used for research, education and commercial purposes for free
Let us know when used in commercial products: “Reportware”
You may choose BSD License to be able to link TOPPERS software with 
GNU software.

MPSoC 2009 28

TOPPERS Inside

Do! KARAOKE
(Panasonic)

UA-101 (Roland)

PM-A970 (Epson)

KR-107 (Roland)

GT-541 (Brother)



MPSoC 2009 29

Sorry!
English page has less information

MPSoC 2009 30

RTOSes from TOPPERS Project
TOPPERS/JSP Kernel

Designed for uniprocessor systems
Freely available from the TOPPERS website as an open-source software

TOPPERS/SMP Kernel
Designed for symmetric multiprocessor systems
Run-time task allocation
Pre-released to limited TOPPERS members

TOPPERS/FDMP Kernel
Designed for asymmetric multiprocessors
Static task allocation
Freely available from the TOPPERS website as an open-source software

TOPPERS/FMP Kernel
Designed for asymmetric multiprocessors
Static task allocation with limited task migration
Pre-released to TOPPERS members (will be available to public next year)
Freely available from the TOPPERS website as an open-source software



MPSoC 2009 31

Global bus

Local bus

Local 
memory

Processor

TaskTaskTask

RTOS kernel I/O

Local bus

Local 
memory

Processor

TaskTaskTask

RTOS kernel I/O

Target Arch. of FDMP/FMP Kernels

Processors may be homogeneous or heterogeneous
Local memory can be accessed by other processors

Remote memory access latency may be longer
Tasks are statically allocated to processors

FMP Kernel partially allows dynamic task migration

MPSoC 2009 32

Task Scheduling in FMP/FDMP Kernels
Priority-based preemptive scheduling on each processor

On each processor, the highest-priority task in ready queue is executed
Independent among processors

Uniprocessor-based schedulability analysis can be applied if no 
inter-processor communication exists

This is not the case for SMP-RTOS even if all tasks are fixedly allocated 
to specific processors

Ready queue



MPSoC 2009 33

Task Migration in FMP Kernel
Aim to achieve high throughput with guaranteed real-time 
responsiveness
Automatic task migration loses predictability of system behavior
FMP Kernel only provides API for run-time task migration

does not migrate tasks automatically
It is programmer’s responsibility to decide the task migration 
policy

when, which task, from where to where
Separated mechanism and policy Migration invoked 

by user task

MPSoC 2009 34

Inter-Processor System Calls in 
FDMP/FMP Kernels

FDMP/FMP Kernels provide the same APIs for intra- and inter-processor 
system calls

This separates task development and task allocation
The system calls need to manipulate TCBs (task control blocks) of other 
tasks
FDMP/FMP Kernels manipulate TCBs of the tasks which are running on 
different processors



MPSoC 2009 35

Concluding Remarks

MPSoC 2009 36

Concluding Remarks
Bounding and minimizing worst-case response time of 
tasks and interrupts are critically important, but very 
difficult in multiprocessor systems.

Need to know how RTOS behaves
TOPPERS/FDMP Kernel and FMP Kernel

implement a number of techniques to improve the real-time 
responsiveness
are open-source software available from TOPPERS Project 
at http://www.toppers.jp/
have production-level quality

Your trial use and feedbacks are highly appreciated


