Energy Characterization of Embedded Processors for Software Energy Optimization

Tohru Ishihara

Lovic Gauthier

Kyoto University

Kyushu University

The 11th International Forum on MPSoC and Multicore 2011/07/05

Agenda

Introduction

- Processor Energy Characterization
- Software Energy Optimization

Motivation

- Portable systems execute power hungry applications
- □ Most functions are implemented by software
- Energy depends on the software running on processor systems

Software energy analysis is necessary for reducing the energy consumption of embedded systems

Energy Characterization

- Calculate the energy dissipated for a hardware event using post-layout simulation of a target processor system
- The hardware events include data read, data write, cache miss, program branch execution and so on

Microprocessors &		Energy Lookup Table		
Memory subsystems	Gate-level simulator	HW events	Energy	
		Data read	15 nJ	
		Cache miss	32 nJ	
		Branch exec.	58 nJ	
Construction of the second sec	The second s			

D. Lee, T. Ishihara, M. Muroyama, H. Yasuura, F. Fallha, "An Energy Characterization Frame work for Software-Based Embedded Systems," Proc. of ESTIMedia, pp.59-64, Oct., 2006.

Our Approach

- Run a number of training benches on ISS of a target processor
- Run the same benches on a post-layout model of the processor
- Fit a linear model through regression analysis

Software Energy Analysis

• A linear expression for the software energy consumption

 $E_{estimated} = \sum e_i \cdot N_i$ e_i : energy of HW event, N_i : #HW events

Energy Lookup Table

• The number of the hardware events should be counted by instruction set simulator (ISS)

Source Window				
Elle Bun View Control Preferences 4 7) 7) 7) 8 4 6 6 4 9 Find: Image: state image: state 8 6 6 6 4 9 9 70 70 70 <		HW events	Energy	
0x290440 <icmst>: ld24 r1,0x2a2430 <data0> - 0x290444 <icmst+4>: ld24 r2,0x2a2434 <data5> - 0x290448 <icmst+8>: ld24 r3,0x2a2438 <data5> - 0x290446 <icmst+8>: ld24 r4,0x2a243 <data5> - 0x290446 <icmst+12>: ld24 r4,0x2a243c <data5> - 0x290450 <icmst+16>: ld r1,0r1 -> ld r2,0r2 - 0x290454 <icmst+16>: ld r1,0r1 -> ld r2,0r2 - 0x290454 <icmst+20>: ld r3,0r3 -> ld r4,0r4</icmst+20></icmst+16></icmst+16></data5></icmst+12></data5></icmst+8></data5></icmst+8></data5></icmst+4></data0></icmst>		Data read	15 nJ	
$\begin{array}{c ccccc} & & & & & & & & & & & & & & & & &$		Cache miss	32 nJ	
(e.g GNUPro sid)	The second se	Branch exec.	58 nJ	
- 0x290494 <icmst+845: - 0x290498 <icmst+845: - 0x290498 <icmst+885: - 0x290498 <icmst+885: - 0x290496 <icmst+925: - 0x290496 <icmst+925: - 0x290496 <icmst+955: - 0x29</icmst+955: </icmst+955: </icmst+955: </icmst+955: </icmst+955: </icmst+955: </icmst+955: </icmst+955: </icmst+955: </icmst+955: </icmst+955: </icmst+955: </icmst+955: </icmst+955: </icmst+955: </icmst+955: </icmst+955: </icmst+955: </icmst+955: </icmst+955: </icmst+955: </icmst+955: </icmst+955: </icmst+955: </icmst+955: </icmst+955: </icmst+955: </icmst+955: </icmst+955: </icmst+955: </icmst+955: </icmst+955: </icmst+955: </icmst+955: </icmst+955: </icmst+955: </icmst+955: </icmst+955: </icmst+955: </icmst+955: </icmst+955: </icmst+955: </icmst+955: </icmst+955: </icmst+955: </icmst+955: </icmst+955: </icmst+955: </icmst+955: </icmst+955: </icmst+955: </icmst+955: </icmst+955: </icmst+955: </icmst+955: </icmst+955: </icmst+955: </icmst+955: </icmst+955: </icmst+955: </icmst+955: </icmst+955: </icmst+955: </icmst+955: </icmst+955: </icmst+955: </icmst+955: </icmst+955: </icmst+955: </icmst+955: </icmst+955: </icmst+955: </icmst+955: </icmst+955: </icmst+955: </icmst+955: </icmst+955: </icmst+955: </icmst+955: </icmst+925: </icmst+925: </icmst+885: </icmst+885: </icmst+845: </icmst+845: 	nop (290440) 0			
p				

Energy of SW

6

Accuracy Evaluation

Target system

Processors

- M32R-II, SH3-DSP (Renesus)
- MeP (Toshiba)
- 0.18µm CMOS library

Results for M32R-II & SH3-DSP

Energy estimation for JPEG encoder executed on a M32R-II processor

Multi-Performance Processor

Based on MeP (Toshiba)

- PEs have the same ISA but differ in their clock speeds and energy consumptions
- □ Intra MPU core: a single PE core runs alternatively
- □ Inter MPU cores: multiple MPU cores run concurrently

T. Ishihara, "Real-Time Dynamic Voltage Hopping on MPSoCs," MPSoC 2009, Savannah.
 9

Results for MPP

Energy estimation for JPEG encoder run on a MPP with 1.0V 1-w cache

Applications

Software Energy Analysis Help finding energy bottleneck Software Energy Optimization Compiler optimization

OS-based power management

Software Energy Analysis (1/2)

Software Energy Analysis (2/2)

Software Energy Optimization

Motivation:

- Memory consumes a large amount of energy
- Memory energy depends on program behavior
- Code optimization contributes to the total energy reduction

Code and Data Allocation

CPU//SPM/				
Cache		Size	Latency	Energy
	SPM	Small	Small	Small
Off-chip	Cache	Small	Small	Large
memory	Off-chip mem.	Huge	Huge	Huge

Memory address space

Our Compiler Optimization Techniques

Find the optimal locations of functions and data objects
in a memory address space

Our Approach

Previous work...

Find code & data placements which
maximize # SPM accesses
minimize # cache misses
minimize # off-chip accesses
Do not always minimize the energy

Our method...

Minimize the total energy consumption estimated by our model through an ILP

Total processor energy reduced by 10%

Y. Ishitobi, T. Ishihara, H. Yasuura, "Code and Data Placement for Embedded Processors with
Scratchpad and Cache Memories," Signal Processing Systems 60(2), pp.211-224, August, 2010

Stack Allocation

• Optimization is done at compile time through an ILP

- Find the best locations of stack frames based on profiling
- Store/Load inserted before and after call instructions

Frames are dynamically moved between SPM and MM

- Stack frame is generated in SPM when the function is called
- Store frames into MM if there is no space left in the SPM

Stack Allocation Results

- Circular: Evict oldest frame first if there is no space left in the SPM
- Static: Place frames in the SPM only if SPM does not overflow
- Ours: Placement is optimized by the Integer Linear Programming

L. Gauthier, T. Ishihara, "Optimal Stack Frame Placement and Transfer for Energy Reduction Targeting Embedded Processors with Scratch-Pad Memories," Proc. of IEEE Workshop on Embedded Systems for Real-Time Multimedia, pp.116-125, Oct., 2009.

Multi-Task System

The SPM is shared among tasks

- Several previous techniques
 - (a) Spatial sharing
 - No management required
 - Very small part of the SPM for each task
 - (b) Temporal sharing
 - Totally of SPM space to each task
 - SPM update at context switches
 - (c) Hybrid
 - Best of both approaches
 - Compile time profile-based assignment to SPM

H. Takase, H. Tomiyama, and H. Takada. *Partitioning and allocation of scratch-pad memory for priority-based preemptive multi-task systems*. in DATE '10

SPM Sharing for Multi-Task

- □ At compile time:
 - Assign an SPM space (i. e., block) to each task
 - Find memory objects to place in each block
 - Find an address for each block in SPM for minimizing overlaps
- At run time:
 - Copy only a part of overlapping with coming task

Multi-Task Results

L. Gauthier, et al. "Minimizing Inter-Task Interferences in Scratch-Pad Memory Usage for Reducing the Energy Consumption of Multi-Task Systems," Proc. of CASES, pp.157-164, Oct., 2010.

2

Summary

- A fast accurate model for SW energy consumption
- The error of our approach is 5% on an average and 20% at the maximum case
- Code and data placement techniques drastically reduce the SW energy

Future work

Refine stack placement technique and target heap object (WIP)