Inter/Intra-Chip Optical Networks: Opportunities and Challenges

THE HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY

PUTING

Subsystems of MPSoC

- Computation: process data, implement major functions
- Control: coordinate all the subsystems
- Memory: temporally store data, instructions, and system status
- Communication: transfer data, instructions, and other information inside, into, and out of an MPSoC
- Support: maintain appropriate operating conditions, such as power supply, clock, temperature, etc.
- Can physically overlap
 - E.g. computation and control
- There are grey areas
 - E.g. communication interfaces

Communication Subsystem: Road System of MPSoC

Performance

- Cooperation among functional units and chips
- Communication latency
- Power consumption
 - Significant dynamic power used by communications
 - Considerable leakage of interconnect drivers and buffers
- Cost and yield
 - Metal layers for interconnects
 - Device layer for drivers and buffers
 - Chip I/O

Performance and Power Wall of Electrical Interconnects

• More communications

- Hundreds of cores on a single chip
- Cisco QuantumFlow (40), Intel Phi (61), Tilera Tile (72), Cisco SPP (188), PicoChip (300) ...

• Higher power consumption

- Dynamic and leakage power of drivers and buffers
- Kilowatts of power by 2020*
- Larger latency
 - Multiple clock cycles are required to cross a chip
- Tighter chip I/O bandwidth
 - High pin count, packaging cost, and expensive PCB design

Year	2015	2020	2025
MP process (nm)	25	13	7
Clock (GHz)	4.4	5.3	6.5
Transistor (billion)	3.1	12	49

*R.G. Beausoleil, et al., "Nanoelectronic and Nanophotonic Interconnect," Proceedings of the IEEE, Feb. 2008.

** Based on ITRS2012 update

Optical Interconnects

- Photonic technologies have been successfully used in WAN, LAN, and board level
 - Showed strengths in multicomputer systems and Internet core routers
- Base on silicon waveguide and microresonator (MR)
 - Silicon based and CMOS compatible
 - Demonstrated by IBM, Intel, NEC, HP, Fujitsu, Oracle, NTT, STMicro ...
 - Commercialized by startups, Luxtera, Lightwire/Cisco, Kotura/Mellanox ...
 - MR is as small as 3µm in diameter
 - 30ps switching time has been demonstrated

Silicon-based Waveguide and MR

R. G. Beausoleil *et al.*, "A Nanophotonic Interconnect for High-Performance Many-Core Computation", IEEE LEOS June 2008

Integrated EO and OE Interfaces

G. Masini, *et al.*, "A 1550nm 10Gbps monolithic optical receiver in 130nm CMOS with integrated Ge waveguide photodetector", IEEE International Conference on Group IV Photonics, 2007

On-Chip Optical Routers

R. Ji, J. Xu, L Yang, "Five-Port Optical Router Based on Microring Switches for Photonic Networks-on-Chip", IEEE Photonics Technology Letters, March, 2013

Fundamentally Different "Building Material"

Advantages

- Ultra-high bandwidth
- Low propagation delay
- Low propagation loss
- Low sensitivity to environmental EMI

Disadvantages

- Difficult to "buffer" optical signals
- Electrical/optical conversion overheads
- Thermal sensitivity
- Crosstalk noise
- Specialties
- Such differences bring new opportunities and challenges

Solkan Bridge, Slovenia (stone, 1906)

Cold Spring Bridge, USA (steel, 1963)

Tsing Ma Bridge, Hong Kong (steel, 1997)

Outline

- Introduction
- Unified Inter/Intra-Chip Optical Network
- Thermal Modeling
- Optical Crosstalk Noise Analysis
- Communication Traffic Patterns
- Summary

Intra-Chip Communication Architecture (CMA)

- Ad hoc interconnects
 - Dedicated point-to-point interconnections
 - Intuitive, but not cost-effective for complex systems

Bus

- Shared media communication architectures
- Mature, but limited throughput and high power consumption
- Network-on-Chip (NoC)
 - Based on switching and routing techniques
 - High-throughput, scalable, and energy-efficient
 - But complex to design
- Many intra-chip CMAs originate from interchip or multicomputer CMAs
 - Such as bus and NoC

Codesign Inter- and Intra-Chip Communication Architectures

- Inter- and intra-chip CMAs based on electrical interconnects are often separately designed
 - Different on-chip and on-board constraints
 - Limited chip I/Os create a sharp chip boundary
 - Maximize design flexibility and allow third-party system integration
- Jointly design inter- and intra-chip CMAs could potentially take the full advantage of optical interconnects
 - Ultra-high bandwidth
 - Reduce buffering and large E/O conversion overheads

UNION: Unified Inter/Intra-Chip Optical Network

- Hierarchical optical network for multiple chips
- Optical network-on-chip (ONoC) is the intra-chip network
- Inter-chip optical network (ICON) collaborates with ONoC to handle inter-chip traffic
- Payload and control packets share the same optical network

* X. Wu, Y. Ye, W. Zhang, W. Liu, M. Nikdast, X. Wang, J. Xu, "UNION: A Unified Inter/Intra-Chip Optical Network for Chip Multiprocessors", NanoArch, June 2010

Fat Tree based ONoC

- A k-core chip uses an llevel tree
 - Electronic concentrator connects four cores
 - Routers are grouped into router clusters
 - $l = \log_2(k / 4)$ network levels
 - $(k / 8) \log_2(k / 4)$ optical routers
 - k/4 crossbar-based concentrators
- Use turnaround routing algorithm

- Centralized control decision but distributed execution
- Dynamic optical power control
 - Adjust EO interface power based on different optical paths

Basic Optical Switching Element (BOSE)

- Two types of 1x2 BOSEs
 - Crossing element and parallel element
 - Both composed of an MR and two optical waveguides
- Crossing element has a waveguide crossing, and hence additional crossing insertion loss
- Optical components are still in the range of microns
 - Minimizing the number of MRs is necessary

Optical Turnaround Router (OTAR)

UP left

DOWN left

DOWN right

- 4x4 switching function
- Strictly non-blocking for turnaround routing algorithm
- Use λ_0 for payload packets
 - λ_0 is the on-state resonance wavelength
- Better than optical crossbars
 - Six MRs, four waveguides, no terminators
 - Minimized waveguide crossing insertion loss
 - Ports are aligned to intend directions
- Passively route packets
 - Between UP-left and DOWN-left as well as UP-right and DOWN-right
 - Save power and reduce MR insertion loss in 40% cases

Down Left

Down

Right

Router Clusters

- Each cluster is controlled by a single control unit
- Control signals are from the network controller
- Use λ_1 for control packets
 - The network is designed to passively transfer control packets
- One extra O-to-E interface and MR with off-state resonance wavelength λ_1

Network Controller

- Connected to the top level router cluster
- Deterministic turnaround routing algorithm
 - Complexity is $O(n \log n)$
- Cost is 0.11mm² and 31µW/MHz for 64-core 1.25GHz multicore processor in 45nm

Floorplan of Fat Tree Based ONoC

- Cluster the routers
- The optimized floorplan minimizes the number of waveguide crossings
 - Waveguide crossing is the major cause of optical power loss
 - 87% reduction compared to the H-tree floorplan

* Z. Wang, J. Xu, et al., "Floorplan Optimization of Fat-Tree Based Networks-on-Chip for Chip Multiprocessors", IEEE Transactions on Computers 2012

Inter-Chip Optical Network

- Multichannel data bus
 - One channel per top-level router
 - Each half-duplex bidirectional channel uses one waveguide
 - Each channel can be dynamically divided to carry multiple point-to-point communications simultaneously
 - Interface switches are controlled by network controllers
- Control bus uses a single waveguide

Protocols

- Connection-oriented circuit switching for payload packets
- Deterministic turnaround routing algorithm for ONoC
 - Minimal path routing
 - Dead lock and live lock free
- For inter-chip traffic, optical paths in source multicore, destination multicore and ICON are reserved simultaneously
- Three control packets are used to maintain optical paths
 - REQUEST, GRANT, TEARDOWN

Simulation and Comparison

- Systems with one to eight 64-core multicore processors
 - 40Gb/s bandwidth for λ_0 and λ_1
 - Electronic units work at 1.25GHz in 45nm
- Electrical counterpart
 - Fat tree based NoC and inter-chip bus
 - 40Gb/s per interconnection with extra control lines
- Under eight real applications
 - 200~3000 tasks per application
 - Mapped and scheduled offline for maximum performance
- SystemC-based cycle-accurate architecture-level simulation environment

Network Performance

Lower packet delay and better scalability

Energy Efficiency

Higher energy efficiency and better scalability

Performance

 On average more than 3X improvement compared to the electrical counterpart

Outline

- Introduction
- Unified Inter/Intra-Chip Optical Network
- Thermal Modeling
- Optical Crosstalk Noise Analysis
- Communication Traffic Patterns
- Summary

Thermal Modeling

- Chip temperatures vary a lot over both time and space
- Thermal effects can cause
 - Laser power efficiency degradation
 - Temperature-dependent wavelength shifting
 - Optical power loss caused by wavelength mismatch
- System-level thermal model needs to consider
 - VCSEL temperature-dependent wavelength shifting and power efficiency
 - Microresonator temperature-dependent wavelength shifting and optical power loss
 - Waveguide propagation loss variation
 - Photodetector sensitivity and dark current
 - Chip temperature distribution

^{*} Y. Ye, J. Xu, X. Wu, W. Zhang, X. Wang, M. Nikdast, Z. Wang, W. Liu, "Modeling and Analysis of Thermal Effects in Optical Networks-on-Chip", ISVLSI 2011

Thermal Model of Optical Interconnects

- Necessary condition for an optical link to function properly
 - Optical power reaching the receiver must be larger than the receiver sensitivity

Optical link

VCSEL

Switching stage 1

MR
Switching stage 2

Optical transmitter

Optical path

Optical receiver

 $P_{TX} - L_{SW} - L_{WG} \ge S_{RX}$

$$P_{TX} = (I - \alpha - \beta (T_{VCSEL} - T_{th})^2) (\varepsilon - \gamma \cdot T_{VCSEL})$$

$$L_{SW} = \sum_{i=1}^{N} 10 \log((\frac{2\kappa^2 + \kappa_p^2}{2\kappa^2})^2 \cdot (1 + (\lambda_{VCSEL_min} + \rho_{VCSEL}(T_{VCSEL} - T_{min}) - \rho_{MR}(T_{MR_i} - T_{min}) - \lambda_{MR_min})^2 / \delta^2))$$

$$\begin{aligned} 10log((I - \alpha - \beta(T_{VCSEL} - T_{th})^2)(\varepsilon - \gamma \cdot T_{VCSEL})) - \sum_{i=1}^N 10log((\frac{2\kappa^2 + \kappa_p^2}{2\kappa^2})^2 \cdot (1 + \delta^{-2}(\lambda_{VCSEL_min} + \rho_{VCSEL}(T_{VCSEL} - T_{min}) - \rho_{MR}(T_{MR_i} - T_{min}) - \lambda_{MR_min})^2)) - L_{WG} \geq S_{RX} \end{aligned}$$

Electronic domain 2

Optimal Initial Device Settings

Total power consumption

 $P_{total} = P_{VCSEL} + P_{driver} + P_{MRs} + P_{SerDes} + P_{receiver}$

- Optimal initial device settings exist
- They can be decided by the following formula

Worst-Case Power Consumption

- Thermal tuning can compensate wavelength deviation from resonance
- Default setting: $\lambda_{MR_0} = \lambda_{VCSEL_0} = 1550$ nm at room temperature
 - 5 pJ/bit when temperature reaches 85°C
- Optimal settings can improve the power efficiency by 29% to 3.7 pJ/bit

Worst-case power consumption, 3-dB bandwidth is 3.1nm, three switching stages

Optical Crosstalk Noise

- Crosstalk noise is an intrinsic characteristic of optical components
 - Very small at device level: 0.01% ~ 0.1% of signals at device level
 - Was ignored at router and network levels
- We modeled them in the power domain

* Y. Xie, M. Nikdast, J. Xu, et al., "Crosstalk Noise and Bit Error Rate Analysis for Optical Network-on-Chip", DAC 2010

Worst-Case Signal-to-Noise Ratio

For arbitrary MxN mesh network using arbitrary optical routers

$$SNR_{a,\min,M,N} = \frac{L_{a,ln,E}L_{a,W,S}^{N-3}L_{a,W,S}L_{a,W,S}L_{a,N,S}L_{a,N,Ej} + L_{a,W,S}L_{a,N,S}^{M-3}L_{a,N,Ej}L_{a,W,S}L_{a,N,S}L_{a,N,S}L_{a,N,S}L_{a,N,S}L_{a,N,Ej}}{N_{a,X,2}} + L_{a,N,Ej}L_{a,W,S}L_{a,N,S}L_{a,N,Ej} \left(\frac{1 - L_{a,W,E}^{M-3}}{1 - L_{a,W,S}}N_{a,Y,2} + L_{a,N,Ej}\left(\frac{1 - L_{a,N,S}^{M-3}}{1 - L_{a,N,S}}N_{a,Y,3}\right) + N_{a,Y,M}\right)} + N_{a,Y,M}$$

$$N_{a,X,j} = \begin{cases} L_{a,ln,S}P_{in}\frac{L_{a,N,S}}{L_{c_1}}L_{c_2}L_g(k_1 + L_{c}^2k_2) + L_{a,ln,W}L_{a,E,Ej}P_{in}L_{c_2}L_gk_1 & j = 1 \\ L_{a,ln,W}\frac{L_{a,W,Z}}{L_{c}^2L_g}}P_{in}k_1 + L_{a,ln,W}L_{a,E,Ej}P_{in}L_{c_2}L_g(k_1 + L_{c}^2k_2) + L_{a,ln,N}L_{a,S,N}\frac{L_{a,W,Z}}{L_{c}^2L_g^2}}P_{in}k_1 + L_{a,ln,S}\frac{L_{a,N,S}}{L_{c_1}L_g^2}P_{in}L_{c_2}L_g(k_1 + L_{c}^2k_2) + L_{a,ln,W}L_{a,E,N}\frac{L_{a,W,Z}}{L_{c}^2L_g^2}}P_{in}k_1 + L_{a,ln,S}\frac{L_{a,N,S}}{L_{c_1}L_g^2}}P_{in}L_{c_2}(k_1 + L_{c}^2k_2) + L_{a,ln,W}L_{a,E,N}\frac{L_{a,W,Z}}{L_{c}^2L_g^2}}P_{in}k_1 + L_{a,ln,W}\frac{L_{a,E,N}}{L_{c_1}L_g^2}}P_{in}L_{c_2}(k_1 + L_{c}^2k_2) + L_{a,ln,W}L_{a,E,N}\frac{L_{a,W,Z}}{L_{c}^2L_g^2}}P_{in}k_1 + L_{a,ln,W}\frac{L_{a,E,N}}{L_{c}^2L_g^2}}P_{in}L_{c_2}(k_1 + L_{c}^2k_2) + L_{a,ln,W}L_{a,E,N}\frac{L_{a,W,Z}}{L_{c}^2L_g^2}}P_{in}k_1 + L_{a,ln,W}\frac{L_{a,E,N}}{L_{c}^2L_g^2}}P_{in}L_{c_2}(k_1 + L_{c}^2k_2) + L_{a,ln,W}L_{a,E,N}\frac{L_{a,W,Z}}{L_{c}^2L_g^2}}P_{in}k_1 + L_{a,ln,W}\frac{L_{a,E,N}}{L_{c}^2L_g^2}}P_{in}L_{c_2}(k_1 + L_{c}^2k_2) + L_{a,ln,W}\frac{L_{a,E,N}}{L_{c}^2L_g^2}}P_{in}k_1 + L_{a,ln,W}\frac{L_{a,E,N}}{L_{c}^2L_g^2}}P_{in}L_{c_2}(k_1 + L_{c}^2k_2) + L_{a,ln,W}\frac{L_{a,E,N}}{L_{c}^2L_g^2}}P_{in}k_{c_2}(k_1 + L_{c}^2k_2) + L_{a,ln,W}\frac{L_{a,E,N}}{L_{c}^2L_g^2}}P_{in}k_{c_2}(k_1 + L_{c}^2k_2) + L_{a,ln,W}\frac{L_{a,E,N}}{L_{c}^2L_g^2}}P_{in}(k_2 + L_{e,ln,W}^2}\frac{L_{a,E,N}}{L_{c}^2L_g^2}}P_{in}(k_2 + L_{e,lN}^2) + L_{a,ln,W}\frac{L_{a,E,N}}{L_{c}^2L_g^2}P_{in}(k_2 + L_{e,lN}^2) + L_{a,ln,W}\frac{L_{a,E,N}}{L_{c}^2L_g^2}}P_{in}(k_2 + L_{e,lN}^2) + L_{a,LN}\frac{L_{a,E,N}}{L_{c}^2L_g^2}P_{in}(k_2 + L_{e,LN}^2) + L_{a,LN}\frac{L_{a,E,N}}{L_{c}^2L_g^2}P_{in}(k_2 + L_{e,LN}^2) + L_{a,LN}\frac{L_{a,E,N}}{L_{c}^2L_g^2}P_{$$

Worst-Case SNR

- Crosstalk significantly lowers SNR of mesh network
- Optical router design strongly affects SNR

Communication Traffic Patterns

- Communication traffic patterns are essential for Interconnection networks
 - Architecture exploration
 - Performance evaluation
 - Comparisons
- Random/synthetic traffic patterns
 - Pro: simple to implement, pinpoint specific aspects of networks
 - Con: cannot show overall application performance and power, and application-specific issues

• Realistic traffic patterns are based on real applications

- Pro: show overall application performance and power, and application-specific issues
- Con: difficult to get

^{*} W. Liu, J. Xu, X. Wu, Y. Ye, X. Wang, W. Zhang, M. Nikdast, Z. Wang, "A NoC Traffic Suite Based on Real Applications", ISVLSI 2011

MCSL Benchmark Suite

Based on real applications

Consider computation, communication, and memory

Application	Description	Tasks	Communication Links
FFT-1024_complex	Fast Fourier transform with 1024 inputs of complex numbers	16,384	25,600
H264-1080p_dec	H.264 video decoder with a resolution of 1080p	5,191	7,781
H264-720p_dec	H.264 video decoder with a resolution of 720p	2,311	3,461
FPPPP	SPEC95 Fpppp is a chemical program performing multi-electron integral derivatives	334	1145
RS-32_28_8_dec	Reed-Solomon code decoder with codeword format RS(32,28,8)	278	390
RS-32_28_8_enc	Reed-Solomon code encoder with codeword format RS(32,28,8)	248	328
SPARSE	Random sparse matrix solver for electronic circuit simulations	96	67
ROBOT	Newton-Euler dynamic control calculation for the 6-degrees-of- freedom Stanford manipulator	88	131

More applications will be released soon

Collaborating with application experts

Generation Methodology

- Based on HW/SW codesign flow
 - MCSL stands for Multi-Constraint System-Level
- Optimized to maximize overall application performance
 - Memory space allocation
 - Application mapping and scheduling
- Support different topologies and network sizes
 - Capture communication behaviors as well as their temporal and spatial dependencies
 - Traffic patterns can be applied to NoC with the same topology and size but different settings
 - Currently cover mesh, torus, and fat tree
- Two types of traffic patterns
 - Recorded traffic pattern (RTP) for detailed analysis
 - Statistical traffic pattern (STP) for average, worst, and best case studies

Communications Among Tasks

Communications Among PBs on 8x8 Mesh-based NoC

7/23/2013

Jiang Xu (HKUST)

Comparing to Random Traffics

- Significantly different network performance results reported by random traffic patterns
 - E.g. uniform traffic patterns report
 34X smaller packet delay on average

Summary

- Optical interconnect is a promising technology
- Many architectures and techniques have been explored, but much more could be done
- There are new challenges

Acknowledgement

Current group members

- Yaoyao Ye, Xiaowen Wu, Zhehui Wang, Mahdi Nikdast, Duong Huu Kinh Luan, Xuan Wang, Zhe Wang
- Past members
 - Weichen Liu, Kwai Hung Mo, Yu Wang, Yiyuan Xie, Huaxi Gu, Xing Wen, Qi Li

人子 大學教育資助委員會 University Grants Committee

int_el.

- R. Ji, J. Xu, L. Yang, "Five-Port Optical Router Based on Microring Switches for Photonic Networks-on-Chip", IEEE Photonics Technology Letters, March, 2013.
- Y. Ye, J. Xu, *et al.*, "System-Level Modeling and Analysis of Thermal Effects in Optical Networks-on-Chip", IEEE Transactions on Very Large Scale Integration Systems, February 2013.
- Y. Ye, J. Xu, *et al.*, "3D Mesh-based Optical Network-on-Chip for Multiprocessor System-on-Chip", IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, April 2013.
- X. Wu, Y. Ye, J. Xu, *et al.*, "UNION: A Unified Inter/Intra-Chip Optical Network for Chip Multiprocessors", Accepted by IEEE Transactions on Very Large Scale Integration Systems.
- Z. Wang, J. Xu, et al., "Floorplan Optimization of Fat-Tree Based Networks-on-Chip for Chip Multiprocessors", Accepted by IEEE Transactions on Computers.
- Y. Ye, J. Xu, *et al.*, "System-level Analysis of Mesh-based Hybrid Optical-Electronic Network-on-Chip," IEEE International Symposium on Circuits and Systems, May 2013.
- Y. Ye, J. Xu, *et al.*, "A Torus-based Hierarchical Optical-Electronic Network-on-Chip for Multiprocessor System-on-Chip", ACM Journal on Emerging Technologies in Computing Systems, February 2012.
- Y. Xie, J. Xu, et al., "Crosstalk Noise Analysis and Optimization in 5×5 Hitless Silicon Based Optical Router for Optical Networks-on-Chip (ONoC)," IEEE/OSA Journal of Lightwave Technology, January, 2012.
- Y. Xie, M. Nikdast, J. Xu, et al., "A Formal Worst-Case Analysis of Crosstalk Noise in Mesh-Based Optical Networks-on-Chip", IEEE Transactions on Very Large Scale Integration Systems, 2012.
- Z. Wang, J. Xu, et al., "A Novel Low-Waveguide-Crossing Floorplan for Fat Tree Based Optical Networks-on-Chip", IEEE Optical Interconnects, 2012.
- Y. Ye, J. Xu, et al., "Thermal Analysis for 3D Optical Network-on-Chip Based on a Novel Low-Cost 6x6 Optical Router", IEEE Optical Interconnects Conference, 2012.
- K. Feng, Y. Ye, J. Xu, "A Formal Study on Topology and Floorplan Characteristics of Mesh and Torus-based Optical Networks-on-Chip", Microprocessors and Microsystems, June 2012.
- Y. Ye, X. Wu, J. Xu, *et al.*, "Holistic Comparison of Optical Routers for Chip Multiprocessors", IEEE International Conference on Anti-Counterfeiting, Security and Identification, 2012.
- Y. Ye, J. Xu, *et al.*, "Modeling and Analysis of Thermal Effects in Optical Networks-on-Chip," IEEE Computer Society Annual Symposium on VLSI, 2011.
- Y. Xie, J. Xu, et al., "Elimination of cross-talk in silicon-on-insulator waveguide crossings with optimized angle", Optical Engineering, June 2011.
- W. Liu, J. Xu, et al., "A NoC Traffic Suite Based on Real Applications," ISVLSI, 2011.
- Y. Xie, M. Nikdast, J. Xu, et al., "Crosstalk Noise and Bit Error Rate Analysis for Optical Network-on-Chip", DAC, 2010.
- X. Wu, Y. Ye, W. Zhang, W. Liu, M. Nikdast, X. Wang, J. Xu, "UNION: A Unified Inter/Intra-Chip Optical Network for Chip Multiprocessors", NanoArch, 2010.
- K.H. Mo, Y. Ye, X. Wu, W. Zhang, Weichen Liu, J. Xu, "A Hierarchical Hybrid Optical-Electronic Network-on-Chip", ISVLSI, 2010.
- H. Gu, S. Wang, Y. Yang, J. Xu, "Design of Butterfly-Fat-Tree Optical Network-on-Chip", Optical Engineering, vol 49, issue 9, 2010.
- H. Gu, J. Xu, W. Zhang, "A Low-power Fat Tree-based Optical Network-on-Chip for Multiprocessor System-on-Chip", DATE, 2009.
- Y. Ye, L. Duan, J. Xu, et al., "3D Optical NoC for MPSoC", IEEE International 3D System Integration Conference, 2009.
- H. Gu, K. H. Mo, J. Xu, et al., "A Low-power Low-cost Optical Router for Optical Networks-on-Chip in Multiprocessor Systems-on-Chip", ISVLSI, 2009.
- H. Gu, J. Xu, et al., "ODOR: a Microresonator-based High-performance Low-cost Router for Optical Networks-on-Chip", CODES, 2008.
- H. Gu, J. Xu, et al., "A Novel Optical Mesh Network-on-Chip for Gigascale Systems-on-Chip", IEEE Asia Pacific Conference on Circuits and Systems, 2008.
- H. Gu, J. Xu, *et al.*, "Design of Sparse Mesh for Optical Network on Chip", IEEE Asia Pacific Optical Communications, 2008.

Thanks!