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Subsystems of MPSoC 

 Computation: process data, implement major functions 

 Control: coordinate all the subsystems 

 Memory: temporally store data, instructions, and system 
status 

 Communication: transfer data, instructions, and other 
information inside, into, and out of an MPSoC  

 Support: maintain appropriate operating conditions, such as 
power supply, clock, temperature, etc. 
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 Can physically overlap 

 E.g. computation and control 

 There are grey areas 

 E.g. communication interfaces 
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Communication Subsystem:  

Road System of MPSoC 

 Performance 
 Cooperation among functional units and chips 

 Communication latency 

 Power consumption 
 Significant dynamic power used by 

communications 

 Considerable leakage of interconnect drivers 
and buffers 

 Cost and yield 
 Metal layers for interconnects  

 Device layer for drivers and buffers 

 Chip I/O 
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Performance and Power Wall of 

Electrical Interconnects 

 More communications 
 Hundreds of cores on a single chip 

 Cisco QuantumFlow (40), Intel Phi 
(61), Tilera Tile (72), Cisco SPP 
(188), PicoChip (300) … 

 Higher power consumption 
 Dynamic and leakage power of 

drivers and buffers 

 Kilowatts of power by 2020* 

 Larger latency 
 Multiple clock cycles are required to 

cross a chip 

 Tighter chip I/O bandwidth 
 High pin count, packaging cost, and 

expensive PCB design 

Year 2015 2020 2025 

MP process (nm) 25 13 7 

Clock (GHz) 4.4 5.3 6.5 

Transistor (billion) 3.1 12 49 
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** Based on ITRS2012 update *R.G. Beausoleil, et al., "Nanoelectronic and Nanophotonic Interconnect," Proceedings of the IEEE, Feb. 2008. 



Optical Interconnects 

 Photonic technologies have been 
successfully used in WAN, LAN, 
and board level 
 Showed strengths in multicomputer 

systems and Internet core routers 

 Base on silicon waveguide and 
microresonator (MR) 
 Silicon based and CMOS compatible 

 Demonstrated by IBM, Intel, NEC, HP, 
Fujitsu, Oracle, NTT, STMicro … 

 Commercialized by startups, Luxtera, 
Lightwire/Cisco, Kotura/Mellanox … 

 MR is as small as 3µm in diameter 

 30ps switching time has been 
demonstrated 
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Silicon-based 

Waveguide and MR 
 

R. G. Beausoleil et al., “A 

Nanophotonic Interconnect for 

High-Performance Many-Core 

Computation”, IEEE LEOS 

June 2008 

Integrated EO 

and OE Interfaces 
 

G. Masini, et al., “A 1550nm 

10Gbps monolithic optical 

receiver in 130nm CMOS 

with integrated Ge 

waveguide photodetector”, 

IEEE International 

Conference on Group IV 

Photonics, 2007  

On-Chip Optical 

Routers 
 

R. Ji, J. Xu, L Yang, “Five-Port 

Optical Router Based on 

Microring Switches for 

Photonic Networks-on-Chip”, 

IEEE Photonics Technology 

Letters, March, 2013 



Fundamentally Different 

“Building Material” 

 Advantages 
 Ultra-high bandwidth 

 Low propagation delay 

 Low propagation loss 

 Low sensitivity to environmental EMI 

 Disadvantages 
 Difficult to “buffer” optical signals 

 Electrical/optical conversion overheads 

 Thermal sensitivity 

 Crosstalk noise 

 Specialties 

 Such differences bring new 
opportunities and challenges 
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Solkan Bridge, Slovenia (stone, 1906) 

Cold Spring Bridge, USA (steel, 1963)  

Tsing Ma Bridge, Hong Kong (steel, 1997) 



Outline 

 Introduction 

 Unified Inter/Intra-Chip Optical Network 

 Thermal Modeling 

 Optical Crosstalk Noise Analysis 

 Communication Traffic Patterns 

 Summary 
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Intra-Chip Communication 

Architecture (CMA) 

 Ad hoc interconnects 
 Dedicated point-to-point interconnections 

 Intuitive, but not cost-effective for complex 
systems 

 Bus 
 Shared media communication architectures 

 Mature, but limited throughput and high power 
consumption 

 Network-on-Chip (NoC) 
 Based on switching and routing techniques 

 High-throughput, scalable, and energy-efficient 

 But complex to design 

 Many intra-chip CMAs originate from inter-
chip or multicomputer CMAs 
 Such as bus and NoC 
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Codesign Inter- and Intra-Chip 

Communication Architectures 

 Inter- and intra-chip CMAs based on electrical 

interconnects are often separately designed 

 Different on-chip and on-board constraints 

 Limited chip I/Os create a sharp chip boundary 

 Maximize design flexibility and allow third-party system 

integration 

 Jointly design inter- and intra-chip CMAs could 

potentially take the full advantage of optical 

interconnects 

 Ultra-high bandwidth 

 Reduce buffering and large E/O conversion overheads 
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UNION: Unified Inter/Intra-Chip 

Optical Network 

 Hierarchical optical network for multiple chips 

 Optical network-on-chip (ONoC) is the intra-chip 
network 

 Inter-chip optical network (ICON) collaborates with 
ONoC to handle inter-chip traffic 

 Payload and control packets share the same optical 
network 
* X. Wu, Y. Ye, W. Zhang, W. Liu, M. Nikdast, X. Wang, J. Xu, “UNION: A Unified Inter/Intra-Chip Optical Network for Chip Multiprocessors”, NanoArch, June 2010 
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Fat Tree based ONoC 

 A k-core chip uses an l-
level tree 
 Electronic concentrator 

connects four cores 

 Routers are grouped into 
router clusters 

                      network levels 

                        optical routers 

 k/4 crossbar-based 
concentrators 

 Use turnaround routing 
algorithm 

 Centralized control decision but distributed execution 

 Dynamic optical power control 
 Adjust EO interface power based on different optical paths 

2
log ( / 4)l k

2
( / 8) log ( / 4)k k
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Basic Optical Switching Element 

(BOSE) 

 Two types of 1x2 BOSEs 
 Crossing element and parallel element 

 Both composed of an MR and two optical waveguides 

 Crossing element has a waveguide crossing, and 
hence additional crossing insertion loss 

 Optical components are still in the range of 
microns 
 Minimizing the number of MRs is necessary 
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Optical Turnaround Router 

(OTAR) 

 4x4 switching function 

 Strictly non-blocking for 
turnaround routing 
algorithm 

 Use 0 for payload packets 
 0 is the on-state resonance 

wavelength 

 Better than optical crossbars 
 Six MRs, four waveguides, no terminators 

 Minimized waveguide crossing insertion loss 

 Ports are aligned to intend directions 

 Passively route packets 
 Between UP-left and DOWN-left as well as UP-right and 

DOWN-right 

 Save power and reduce MR insertion loss in 40% cases 
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Router Clusters 

 Each cluster is controlled by 
a single control unit 

 Control signals are from the 
network controller 

 Use 1 for control packets 
 The network is designed to 

passively transfer control 
packets 

 One extra O-to-E interface 
and MR with off-state 
resonance wavelength 1 
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Network Controller 

 Connected to the top level router cluster 

 Deterministic turnaround routing algorithm 
 Complexity is  

 Cost is 0.11mm2 and 31µW/MHz for 64-core 
1.25GHz multicore processor in 45nm 

( log )O n n
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Floorplan of Fat Tree Based 

ONoC 

 Cluster the routers 

 The optimized floorplan minimizes the number of 
waveguide crossings 
 Waveguide crossing is the major cause of optical power loss 

 87% reduction compared to the H-tree floorplan 
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*  Z. Wang, J. Xu, et al., “Floorplan Optimization of Fat-Tree Based Networks-on-Chip for Chip Multiprocessors”, IEEE Transactions on Computers 2012 



Inter-Chip Optical Network 

 Multichannel data bus 
 One channel per top-level 

router 

 Each half-duplex bidirectional 
channel uses one waveguide 

 Each channel can be 
dynamically divided to carry 
multiple point-to-point 
communications 
simultaneously 

 Interface switches are 
controlled by network 
controllers 

 Control bus uses a single 
waveguide 
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Protocols  

 Connection-oriented circuit switching for payload 

packets 

 Deterministic turnaround routing algorithm for ONoC 

 Minimal path routing 

 Dead lock and live lock free 

 For inter-chip traffic, optical paths in source multicore, 

destination multicore and ICON are reserved 

simultaneously 

 Three control packets are used to maintain optical 

paths 

 REQUEST, GRANT, TEARDOWN 
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Simulation and Comparison 

 Systems with one to eight 64-core multicore 
processors 
 40Gb/s bandwidth for 0 and 1 

 Electronic units work at 1.25GHz in 45nm 

 Electrical counterpart 
 Fat tree based NoC and inter-chip bus 

 40Gb/s per interconnection with extra control lines 

 Under eight real applications 
 200~3000 tasks per application 

 Mapped and scheduled offline for maximum performance 

 SystemC-based cycle-accurate architecture-level 
simulation environment 
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Network Performance 

 Lower packet delay and better scalability 
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Energy Efficiency 

 Higher energy efficiency and better scalability 
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Performance 

 On average more than 3X improvement compared 

to the electrical counterpart 
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Thermal Modeling 

 Chip temperatures vary a lot over both time and space 

 Thermal effects can cause 
 Laser power efficiency degradation 

 Temperature-dependent wavelength shifting 

 Optical power loss caused by wavelength mismatch 

 System-level thermal model needs to consider 
 VCSEL temperature-dependent wavelength shifting and power 

efficiency 

 Microresonator temperature-dependent wavelength shifting 
and optical power loss 

 Waveguide propagation loss variation 

 Photodetector sensitivity and dark current 

 Chip temperature distribution 
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* Y. Ye, J. Xu, X. Wu, W. Zhang, X. Wang, M. Nikdast, Z. Wang, W. Liu, “Modeling and Analysis of Thermal Effects in Optical Networks-on-Chip”, ISVLSI 2011 



Thermal Model of Optical 

Interconnects 

 Necessary condition for 
an optical link to 
function properly 
 Optical power reaching 

the receiver must be 
larger than the receiver 
sensitivity 
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Optimal Initial Device Settings 

 Total power consumption  
𝑃𝑡𝑜𝑡𝑎𝑙 = 𝑃𝑉𝐶𝑆𝐸𝐿 + 𝑃𝑑𝑟𝑖𝑣𝑒𝑟 + 𝑃𝑀𝑅𝑠 + 𝑃𝑆𝑒𝑟𝐷𝑒𝑠 + 𝑃𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟 

 Optimal initial device settings exist 

 They can be decided by the following formula 

λ𝑀𝑅_0 = λ𝑉𝐶𝑆𝐸𝐿_0 + 
ρ𝑉𝐶𝑆𝐸𝐿− ρ𝑀𝑅

2
∙ (𝑇𝑚𝑎𝑥 +𝑇𝑚𝑖𝑛 −2𝑇0) 

Worst-case optical 

power received at the 

receiver (N is the 

number of switching 

stages) 
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Worst-Case Power Consumption 

 Thermal tuning can 

compensate wavelength 

deviation from resonance 

 Default setting: λ𝑀𝑅_0= 

λ𝑉𝐶𝑆𝐸𝐿_0=1550nm at room 

temperature  

 5 pJ/bit when temperature 

reaches 85oC 

 Optimal settings can improve 

the power efficiency by 29% 

to 3.7 pJ/bit 

Worst-case power consumption,  

3-dB bandwidth is 3.1nm, three 

switching stages 
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Optical Crosstalk Noise 

 Crosstalk noise is an intrinsic characteristic of 

optical components 

 Very small at device level: 0.01% ~ 0.1% of signals at 

device level 

 Was ignored at router and network levels 

 We modeled them in the power domain 
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* Y. Xie, M. Nikdast, J. Xu, et al., “Crosstalk Noise and Bit Error Rate Analysis for Optical Network-on-Chip”, DAC 2010 



Worst-Case Signal-to-Noise Ratio 
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 For arbitrary MxN mesh network using arbitrary 

optical routers 
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Worst-Case SNR 

 Crosstalk significantly lowers 

SNR of mesh network 

 Optical router design strongly 

affects SNR 
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Communication Traffic Patterns 

 Communication traffic patterns are essential for 
Interconnection networks  
 Architecture exploration 

 Performance evaluation 

 Comparisons 

 Random/synthetic traffic patterns 
 Pro: simple to implement, pinpoint specific aspects of networks 

 Con: cannot show overall application performance and power, 
and application-specific issues 

 Realistic traffic patterns are based on real applications 
 Pro: show overall application performance and power, and 

application-specific issues 

 Con: difficult to get 
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* W. Liu, J. Xu, X. Wu, Y. Ye, X. Wang, W. Zhang, M. Nikdast, Z. Wang, “A NoC Traffic Suite Based on Real Applications”, ISVLSI 2011 



MCSL Benchmark Suite 

 Based on real applications 
 Consider computation, communication, and memory 

 

 
 

 

 

 

 

 

 More applications will be released soon 
 Collaborating with application experts 
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Application Description Tasks 
Communication 

Links 

FFT-1024_complex Fast Fourier transform with 1024 inputs of complex numbers 16,384 25,600 

H264-1080p_dec H.264 video decoder with a resolution of 1080p 5,191 7,781 

H264-720p_dec H.264 video decoder with a resolution of 720p 2,311 3,461 

FPPPP 
SPEC95 Fpppp is a chemical program performing multi-electron 

integral derivatives 
334 1145 

RS-32_28_8_dec Reed-Solomon code decoder with codeword format RS(32,28,8) 278 390 

RS-32_28_8_enc Reed-Solomon code encoder with codeword format RS(32,28,8) 248 328 

SPARSE Random sparse matrix solver for electronic circuit simulations 96 67 

ROBOT 
Newton-Euler dynamic control calculation for the 6-degrees-of-

freedom Stanford manipulator 
88 131 



Generation Methodology 

 Based on HW/SW codesign flow 
 MCSL stands for Multi-Constraint System-Level 

 Optimized to maximize overall application 
performance 
 Memory space allocation 

 Application mapping and scheduling 

 Support different topologies and network 
sizes 
 Capture communication behaviors as well as 

their temporal and spatial dependencies 

 Traffic patterns can be applied to NoC with the 
same topology and size but different settings 

 Currently cover mesh, torus, and fat tree 

 Two types of traffic patterns 
 Recorded traffic pattern (RTP) for detailed 

analysis 

 Statistical traffic pattern (STP) for average, 
worst, and best case studies 
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Communications Among Tasks 
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Communications Among PBs on 

8x8 Mesh-based NoC 
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Comparing to Random Traffics 

 Significantly different network 

performance results reported by 

random traffic patterns 

 E.g. uniform traffic patterns report 

34X smaller packet delay on average 
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Summary 

 Optical interconnect is a promising technology 

 Many architectures and techniques have been 

explored, but much more could be done 

 There are new challenges 
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Thanks! 
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