

Multi/Many-core Processing Perspective for Embedded Computer Vision

Advanced LSI Systems Research New Core Technology Development Division Renesas Electronics Corporation Shorin Kyo

00000-A

Outline

Background

- Anytime, everywhere CV apps
- Issues to be addressed for CV HW and SW
- Hardware Architecture for CV
 - Approaches for performance and power
 - Case studies
- Software Framework for CV
 - Approaches for performance portability
 - Toward an open, efficient, and portable CV platform

Conclusions

Coming Leap of CV Technologies

- New imaging systems Τ.
- II. Breakthrough CV algorithms
- **III.**Computation hardware and software innovations

Coming "Anytime and Everywhere CV" Era

Issues to be Addressed for CV HW

Need performant and low-cost CV HW

Low-cost (low-area and low-power) devices are in general not performant

• No general way to avoid this trade-off

• Way to address the issue under the context of CV ?

Issues to be Addressed for CV SW

Toward Open And Portable CV

- "Write once and run everywhere" is not sufficient
- Goal is to be "write once and performant everywhere"
 - Most CV applications are seriously deadline conscious
 ADAS, AR, UI,
 - Most CV accelerators will be multi/many-cores
 - Different memory system and diverse granularities of parallelism
 - Difficult to achieve performance portability

• Way to address these issues under the context of CV ?

Outline

Background

- Anytime, everywhere CV apps
- Issues to be addressed for CV HW and SW
- Hardware Architecture for CV
 - Approaches for performance and power
 - Case studies
- Software Framework for CV
 - Approaches for performance portability
 - Toward "open, efficient, and portable"

Conclusions

Inevitable Trade-offs in Processor Design

RENESAS

State-of-the-Art Design Choices

- Often results in *high CU ratio* configurations
 - Not an adequate starting-point for designing low-cost CV accelerators

CV Performance Requirement Perspective

Case study of ADAS: 1 TOPS/W is required in very near future

RENESAS

The Inevitable Design Choice

RENESAS

Design Goal for CV Accelerators

- Under configuration B, find a low-cost while smart CU design which can maximize FU activity ratio
 - Use of CV domain specific knowledges will be the key

CV Domain Specific Knowledges

Two-step operation

ROI: Region of Interest

- Parallelism and control
 - Extensive parallelism at both (pixel)-data and ROI level
 - Identical operations against all targets (Step 1:pixel, Step 2:ROI)

SIMD is the typical low-cost deisgn choice

- Asynchronous termination of verification processes
 - E.g. Boosting: frequently used since around 2008
 May need SPMD control

CV Domain Specific Knowledges - Cont.

Memory access aspects

Need to cope with irregular accesses

	Block wise	ROI wise	Table lookup
Access address regularity	Yes	Yes/No	No
Access address predictivity	Yes	Yes	Yes

Non-blocking DMA is a typical low-cost design choice

1st Gen. Design Choice Case Study

Typical 1st Gen. CV Accelerators (- 2008)

SIMD array	Organization	#PE	bit	RAM	FPU	VLIW	non-blocking	Multi
name			/PE	/PE			DMA	Bank
IMAPCAR [`08]	NEC	128	8	2KB	-	x	X	x
CSX [`08]	ClearSpeed	96	64	6KB	x	-	X	X
Xetal II [`07]	NXP	320	16	4KB	-	-	X	-
Ri2001	Ricoh	352	16	1KB	-	-	Х	-
MX [`06]	Renesas	2048	2	64B	_	-	Х	-

- Low-cost controller techniques that used for raising the PE activity ratio
 - Non-blocking DMA
 - VLIW
 - Multi-bank local memory

IMAP-CE['03,'05], IMAPCAR['08]

Non-Blocking DMA Transfer

Non-Blocking DMA Transfer - Cont.

(SIMD +) VLIW

- x2.2 performance gain (in average) with area overhead <13%</p>
 - Asymmetric VLIW is adopted to reduce area overhead

Multi/Many-Bank Local Memory

Case for uniform accesses

Both types can access the same address for all PE

RENESAS

Multi/Many-Bank Local Memory - Cont.

Case for non-uniform accesses

- Many-bank memory mitigates load/store bottleneck
 - Improve PE activity with lower cost
 - 10% overhead for the case of IMAP-CE & IMAPCAR (128PE) design

Multi-bank Local Memory Use Cases

RENESAS

Multi-bank Local Memory Use Cases - Cont.

Rotation in 90 degree

<u>Thinning</u>

1

Labeling

材料 (キャペツ かぶ・ピマン たまねぎ なずのトマト(缶詰)	4人前) 200g キャベ キ4コ かぶ ゲロ たまれ カップ1 たまれ	************************************	200 g 3 4 3 1/20	株 林 キャマー ドマーン 市連わり、
にんにく(うす切り) だせり(みにん切り) オレカン(乾燥) 白ワイン キサラダ油・塩・こしょう	1007日 1007日 たさに1 小さに ¹ 2 カップ ¹ 4 日74 キサラ	************************************	カックト 1かけ号 たっと「 カックジュ	水液やヤマヒ(15日) にんにく(うす)(1) デモリールにいつり) オロカフールで対す) ログスシ キサラダ(油・塩・コレ

Propagation

Toward 2nd Gen. CV Accelerators (approx. 2009~)

Evolution of infrastructure, CV algorithm and applications

- OpenCV 1.0 (2006), 2.0 (2009)
- Application and sensor evolutions
 - ADAS, UI (Kinect), AR, computational imaging, ...
- New CV algorithms (V&J, Boosting, HoG, SIFT, SURF,)
 - Need more control and/or memory access irregularities

2nd Gen. CV Accelerator Design Space

Way to address the issues

- i. Introduce purpose built circuits (i.e. wired logic circuits)
- ii. Introduce more sophisticated controllers
- iii. Combination of i. and ii.

2nd Gen. CV Accelerator Case study

- XC series products and IP cores (IMAPCAR2 [`09], ...)
 - Challenged the issues of highly parallel SIMD in low-cost
 - A) Smarter PE network
 - B) Smarter sequence control
 - C) Smarter DMA

A) Smarter PE Network

- Inter-PE ring network for neighborhood
- Inter-PE hierarchical ring network
 - Data transit 8 PEs at a cycle to both direction
 - 64 parallel data transfer to arbitrary destination only in 7 cycle @64PE LPA

RENESAS

Comparison with Other 2-D Network

Better performance without complex routing logic needed in 2D network (cf. NoC)

RENESAS

B) Smarter Sequence Control

- 4 PEs dynamically reconfigures into a Processing Unit (PU)
 E.g. 64 SIMD PEs into 16PUs (=16 MIMD processors)
 >10% of HW area overhead
 - Data paths and RAMs are reused/reconfigured as FPU and caches

Mode Switch Scenario

Mode Switch Performance Example

Up to 2x speedup by switching to MIMD

C) Smarter DMA

Asynchronous DMA engine for

- ROI to/from continuous data transfer (e.g. for PyrLK optical flow, SIFT, SURF,)
- Random to/from continuous data transder (e.g. for Haar-like features)

ROI DMA Use Case Performance Example

16PU performing Histogram
 Equalization against 256
 ROIs in MIMD mode

CV Accelerator Products and IP Cores

34 ©2012. Renesas Electronics Corporation, All rights reserved.

RENESAS

Specification of A Latest CV Accelerator Core (XC2)

Performance and power vs. a 1.0GHz CPU

- 18x in average more performant
- >3x more power efficient

# of PE	32
Memory	4KB/PE
Freq.	160MHz
Process	40nm
Power	100mW
Die area	2.7mm ²
Peak Perf.	51.2GOPS

Available SW environment

- Eclipse IDE and graph based GUI tool
- >30 OpenCV compatible functions ready
- >100 proprietary CV functions ready

Perspective Toward Next Gen. CV Accelerators

- Incorporate MIMD multi/many-core ?
- Adding more smarter SIMD controllers ?
- More fixed function circuits ?

Outline

Background

- Anytime, everywhere CV apps
- Issues to be addressed for CV HW and SW
- Hardware Architecture for CV
 - Approaches for performance and power
 - Case studies
- Software Framework for CV
 - Approaches for performance portability
 - Toward "open, efficient, and portable"

Conclusions

Issue of Current CV Software Layer

- Lack of open standard CV library
 - OpenCV is currently the de-facto standard for research & prototyping
 - Need modification for mobile and embedded use
 - An issue which Khronos OpenVX is trying to cover

- Lack of adequate open standard accelerator language
 - OpenCL : an industrial standard accelerator language
 - However, lacks performance portability

RENESAS

Pros and Cons of OpenCL

Supported by major vendors (Apple, Intel, AMD, NVIDIA, ...)

- Cross-platform
- A hierarchical memory model (MM) is exposed to programmers

Target Dependency vs. Performance

Exposing the MM : losing performance portability

Not exploiting the MM : losing performance

OpenCL-C code tuned for performance by using local and private memory

OpenCL-C code that tells the essential algorithm

Number of items need to be rewritten when porting a face detection C code for performance [Cho `10]

Can We Do it Like this (in the Context of CV)?

41 ©2012. Renesas Electronics Corporation, All rights reserved.

RENESAS

Related Works

- Compile-time approach([Halide '12])
- MM opaque code (new language)
- MM aware schedule code

- Run-time approach ([AC-FW '11])
 - MM opaque code (C subset)
 - Data set attribute
 - Run-time manager

AC-FW: Automated Chaining Framework

AC-FW : DA (Data-set Attribute) as Algorithmic Features

Dividing (or Tiling) attribute

Neighborhood size attribute

Ordering attribute

RENESAS

AC-FW : The Run-time Manager

AC-FW : Control and Data Flow

The run-time manager tiles data transfer, chains kernels and repetitively invokes per tile operation

AC-FW : Automated Chaining

Tiling : Reduce waiting time due to access latency

Chaining: Reduce memory bandwidth

Run-time Manager Design Example for OCL Devices

Run-time manager generates host C API calls

- Decide the best work-item size
- **Run-time manager** generates kernel entry point OpenCL-C code
 - Chain consecutive user kernel code
 - Exploit the use of local memory

Non-Trivial OCL Device Dependent Optimizations

- Each target requires different work-item size decisions
- Each target requires different local memory usage strategy

Case study of a 3x3 image convolution (image: VGA size)

a. NVIDIA Quadro FX3700 (14*8PE) @500MHz, OpenCL@CUDA SDK 3.2 b. Intel Core(TM) i5-2400 @3.10GHz, Intel OpenCL SDK 1.1

Run-time Manager Overhead Case Study

Fixed overhead occured by scenario decision

Overhead occured per user kernel call (data copy etc.)

Graph Based GUI Environment for AC-FW

- DA is pre-registered for each pre-defined library node
- User defines DA of each user-node
- Node tiling is automated by the run-time manager

Outline

Background

- Anytime, everywhere CV apps
- Issues to be addressed for CV HW and SW
- Hardware Architecture for CV
 - Approaches for performance and power
 - Case studies

Software Framework for CV

- Approaches for performance portability
- Toward "open, efficient, and portable"

Conclusions

Toward Open, Efficient, and Portable CV SW

Analogous with the CG evolution in early 1990s

- OpenCV bridged the gap between research and applications
- OpenVX V1.0 is coming up

CG (Computer Graphics)

The Khronos OpenVX

OpenVX is under design to serve as an open standard HW acceleration layer

- Specification before end of 2013
- Support graph execution
- Support a subset of OpenCV functions

Position of OpenVX

http://www.khronos.org/openvx

RENESAS

Toward "Write Once, Performant Everywhere"

Open standard CV library API

- Delivers fully tuned **off-the-shelf CV techniques**
- Open standard common C-subset + run-time manager
 - Facilitates on-time delivery of latest CV technologies
 - Run-time manager ensures an usable degree of performance

Outline

Background

- Anytime, everywhere CV apps
- Issues to be addressed for CV HW and SW
- Hardware Architecture for CV
 - Approaches for performance and power
 - Case studies
- Software Framework for CV
 - Approaches for performance portability
 - Toward "open, efficient, and portable"

Conclusions

Conclusions

Perspective of CV accelerator designs

- "FU rich, CU poor" configuration is a necessity
 - Design smarter CUs under the context of CV
 - Case study of a series CV accelerator design
 - Perspective of next generation design

Perspective of CV software framework

- Approaches to address the performance portability issue
 - AC-FW as a case study
 - The coming Khronos OpenVX V1.0
 - Toward "write once and performant everywhere !"

References

- [IMAPCAR '08] S.Kyo et al.: "A 100 GOPS in-vehicle vision processor for pre-crash safety systems based on a ring connected 128 4-Way VLIW processing elements", 2008 IEEE Symp.on VLIS Circuits, 28-29.
- [IMAPCAR2 `09] S.Kyo et al.: "IMAPCAR2: A Dynamic SIMD/MIMD Mode Switching Processor for Embedded Systems," Hot Chips 21, 2009
- [IMAPCAR2 `10] S.Kyo et al.: "Performance Evaluation of the SIMD/MIMD Dynamic Mode Switching Processor IMAPCAR2," IEICE Tech. Rep., vol. 110, no. 204, RECONF2010-36, pp.109-114, Sep., 2010.
- [Xetal `07] A.Abbo et al: "XETAL-II: A 107 GOPS, 600mW Massively-Parallel Processor for Video Scene Analysis, Proc. ISSCC, 2007.
- [CSX '08] A.Lokhmotov et al.: "Revisiting SIMD programming," In Languages and Compilers for Parallel Computing, pp.32-46, Springer-Verlag, 2008.
- [MX '06] M.Nakajima et al: "A 40GOPS 250mW Massively Parallel Processor Based on Matrix Architecture," ISSCC 2006.
- [Cho `10] S.M.Cho et.al., "OpenCL and parallel primitives for digital TV applications", IBM J. Res. & Dev., Vol.54, No.5, Paper 7, 2010.
- [Halide `12] Jonathan Ragan-Kelley et al.: "Decoupling Algorithms from Schedules for Easy Optimization of Image Processing Pipelines", ACM Transactions on Graphics 31(4), 2012
- [AC-FW `11] S. Kyo, et.al. Basic API Proposals for Improving OpenCL Performance Portability, 2011-ARC-196(12), 1-8.

Renesas Electronics Corporation