—~

\

=T . .
~@9 Hsinchu, Taiwan

Compilers for Low Power With
Parallel Design Patterns on
Embedded Multicore Systems

Jenq Kuen Lee

Kenny Lin Wen-Li Shih
Department of Computer Science
National Tsing Hua University

Outline

History: Compilers for Low-Power

Pattern-Based Power Optimizations
o BSP Model

o Producer-N-Consumer

o MapReduce

o Coefficient Objects

Experiments
Conclusion

LLow Power Design

= Power optimization are needed at
all levels.

= Higher levels of application and
system layer impact the power
decision most.

u Software for Low-Power |l [spwen | smean HISHCotesin

Algorithm Design
I I als Scheduling, Blindi
d Appl Ications Behavioral 40%~70% CIECHIng, BNng
7= Behavioral Transformations
o OS _ T Clock Gating
) RHeve Qs Precomputation
Q COmpl lers - Logic Restructuring

Logic 19%25%
T | |

~-o Runtime Systems .
pors i - Physcial 10%=15%
- > u Power Simulator pone s

,,,,,,

Rewiring

Transistor sizing
Clock Tree Design

Source: Massoud Pedram, USC

Compilers for Power-Gating
(Static Power)

Compiler frameworks +
employ power-gating N EE
Instructions to reduce static ¢
powers -

To turn off useless
components in pProcessors

Use compiler analysis
techniques to analyze
program behaviors

Floating Point Registers |
(64bits x 32) |

“Compilers for Leakage Power Reductions, Yi-Ping You, Ching-Ren
Lee, Jeng-Kuen Lee, ACM Transactions on Design Automation of
Electronic Systems, Jan. 2006.

http://pllab.cs.nthu.edu.tw/~jklee/papers/todaes.pdf

Component Activity Data-Flow Analysis

= Compiler frameworks employ power-gating instructions to reduce static

pOWers.

= Use compiler analysis techniques to analyze program behaviors.
= To turn off useless components in processors.

= Wake up the components ahead of time considering the cycles needed
for components to be ready.

= Consider Break-Even point/cost-model and incorporate edge profiling
and branching situations.

= Suggest possible ways to work with Out-of-Order architectures.

[FPALU_[FP MUL. [TFPBIVE
[[FPALUT] FP MUL. [FPDIV. |
[CFPALUT] FP MUL. | FPDIV. |

| FPALU [FPMUL. | FPDIV. |

|

|:] Components in use
- Components not in use

Time

ChAq > Thrasholday ; True
CA; > Thrasholdyy, : Falsa
CAs > Thresholdyy, : False
CA,4 = Thresholdyy, : False
Chs > Thrasholdoy : True

PowerOft FP DIV,

[FPALU [FP MUL. [FPDIV.]

PowerOn FP DIV.

PowerOff FP ALU

[[FPALU] FP MUL. | FPDIV. |

[[FPALU | FP MUL. | FPDIV. |

PowerDn FP ALU

| FPALU [FPMUL. | FPDIV. |

Yi-Ping You, Chingren Lee,
and Jeng Kuen Lee. Compiler
analysis and supports for
leakage power reduction on
microprocessors. In
(LCPC’02), pages 63-73,

Compact Power-Gating Control Placement

The amount of power-gating instructions being added

INnCreases as t
equipped wit

Solution: coc

o “sink” power-off instructions
o “hoist” power-on instructions

Time

PowerOn FP_ALU

(_FPALU [FP Mul. [FPDiv.) (_FPALU [FP Mul. [FPDiv.)
(FP ALU [FP Mul. [FPDVD) Z> PowerOn FP_Mul.
(FPALU | FP Mul. [FP Div.) (_FPALU [FP Mul. [FPDiv.)
(FPALU | FP Mul. | FP Div.) PowerOn FP_Div
(FPALU | FP Mul. | FP Div.) (FPALU | FP Mul. | FP Div.)
(_FPALU [FP Mul. [FP Div.) (FPALU | FP Mul. [FP Div.)
(FPALU [FP Mul. | FP Div.) (FPALU | FP Mul. | FP Div.)
(_FPALU [FP Mul. [FP Div.)
PowerOff FP_Mul.
(_FPALU [FP Mul. | FP Div.)

PowerOff FP_ALU
PowerOff FP_Div.

PowerOn FP_ALU, FP_Mul., FP_Div.
(_FPALU [FP Mul. [FP Div.)
(FPALU [FP Mul. [FPDV.D
(FPALU | FP Mul. [FP Div.)
(FPALU | FP Mul. | FP Div.)
(FPALU | FP Mul. | FP Div.)
(_FPALU [FP Mul. | FP Div.)
(FPALU [FP Mul. | FP Div.)
PowerOff FP_ALU, FP_Mul., FP_Div.

() COMPONENT IN USE
C) COMPONENT NOT IN USE

ne Increasing amount of components
N power-gating control.

e motion of power-gating Instructions

Yi-Ping You, Chung-Wen
Huang, and Jenq Kuen Lee.
A Sink-N-Hoist framework
for leakage power
reduction. In Proceedings of
the ACM International
Conference on Embedded
Software (EMSOFT’05),
pages 83-94, Jersey City,
New Jersey, USA,
September 2005.

Framework

Leakage Po

I. ICFG construction
1. Component-Activity Data-Flow Analysis

11l. Power-gating instruction scheduling

IV. SInk-N-Hoist Analysis

V. Power-gating Instruction generation

“A Sink-N-Hoist Framework for Leakage Power Reduction”,
Yi-Ping You, C. W. Huang, Jeng-Kuen Lee, ACM EMSOFT, Sep. 2005.
(Also extended version in ACM TODAES 2007)

http://pllab.cs.nthu.edu.tw/~jklee/papers/1568962864-you.pdf
http://pllab.cs.nthu.edu.tw/~jklee/papers/1568962864-you.pdf
http://pllab.cs.nthu.edu.tw/~jklee/papers/1568962864-you.pdf
http://pllab.cs.nthu.edu.tw/~jklee/papers/1568962864-you.pdf
http://pllab.cs.nthu.edu.tw/~jklee/papers/1568962864-you.pdf

Results: Total Power Reduction

12%

0 CADFE B CADFE w/Sink-N-Hoist

10%

8%

6%

Total Energy Reduction

2%

i

0%

(&\& & (2,6 A deqéyd\ ®© \@@\&@&@\&M
Rt 9&% &:@ g

The Low Power Hardware Design Trend

Power Gating
Architecture

o ARM Cortex A9 MPCore

Different Power Domains

Up to 14 Power Domains
0 Cortex-A9 processors(4)
0 Data Engine(4)

o Processors Cache and
TLB RAMSs(4)

0 SCU duplicated TAG
RAMSs

0 SCU logic cells and
private peripherals

Power Gating
o Four running modes

Run, Standby,
Dormant, Shutdown

Fine-grained pipeline
shutdown

Faster register save
and restore

Corel

_ore’

%lﬁ%)\l MECI
SIMD
Ympel Vmpel
| Clamp [Clamp
Clam CPUO logic + FRL Clamp/| CPU1 logic + FPL
U0| Level shifteeFared FEUMPE Td | SEUL Level ShiftesRarod PeUiv
R M3 and register file RAMS and reglsterflle
Wram Wepul Yram Yepud
Clamp | Clamp
B afag | Level shifter SCU logic + GIC + Timersiatchdogs
Yacurap Yscu

'

'

Cortex-A9 MPCore power domains and clamps*

*source: ARM, Cortex-A9 Mpcore Technical Reference Manual

f\/LIW DSP with Distributed Register Files

Distributed Register Files
Cluster register files |

|_ocal RF Accessible Only by
Dedicated FU

M-I Pair Access Limited by
Ping-pong Switches

Maximal 2 Read Ports + 1

Write Port |
=» Low cost and low power

A VLIW DSP compiler for distributed register
files to match the effort

= PALF scheduling policies for ILP (CPC 2006)

» GRA scheme for distributed register files
(CPC 2007)

_Register spills among distributed register
</ “banks (CPC 2009)

g 3 " b >
-2 2%~ SIMD compiler optimizations with intrinsics
W CPC 2010)

Compiler Support for Low-Power with GPUs

Register files consume 15%-20% of GPU dynamic energy —
an attractive target to optimize.

Energy-efficient register file designs:

o Hierarchical register file (HRF [1, 2]) with compiler
register allocation — 54% energy reduction on RFs

Compiler supports are needed for a three-level register file:

> Main register file (MRF):
- Entries/thread for storing thread contexts
- The biggest and the least energy-efficient
» Operand register file (ORF):
- Entries/thread for data with frequent reads
- Medium size and energy-efficiency

» Last result file (LRF):
- Entry with thread for immediate read after write
- The smallest and most energy-efficient

» Re-allocate (replacement) data which were allocated to
MRF to LRF or ORF whenever it is suitable.

[1] Energy-efficient mechanisms for managing thread context in
throughput processors. Mark Gebhart et. al, ISCA 2011.

[2] A compile-time managed multi-level register file hierarchy. Mark
Gebhart et. al, MICRO 2011.

Main Register File (MRF)

Banked with 1R1IW

T T 3 3
Operand Buffering
0 1 i it

Operand Routing

T

| | | | S

ALU F

eoafeonfeinfeint

| Last Result File (LRF) |

T & & 3§ T T T

Operand RF (ORF)
Banked w/ 3R1W

T T T

Im<Z
xm-

Reference from [2]

Outline

Compilers for Low-Power

Pattern-Based Power Optimizations
o BSP Model

o Producer-N-Consumer

o MapReduce

o Coefficient Objects

Experiments
Conclusion

Design Patterns

Brief introduction to design patterns Deign s |

o Proposed by C. Alexander for city planning and architecture. & it
o Introduced to software engineering by Beck and Cunningham.
o Become prominent in object-oriented programming by GoF.

Design patterns describe “good solutions” to Simall Memory
recurring problems in a particular context.

o Patterns for object-oriented programming
Creational patterns, Structural patterns, Behavioral patterns, etc.

o Patterns for limited memory systems

Compression, Small data structures, Memory allocation, etc. —
FOR PARALLEL

o Patterns for parallel programming PROGRANMING

Finding concurrency, Algorithm structure, Supporting
structures and Implementation mechanisms.

Parallel Design Patterns

Parallelization can be a process to transform problems
to programs by selecting appropriate patterns.

Finding Algorithm Supporting
Concurrency Structure Structures
Decomposition of Appropriate Program Parallelized
problems Algorithms Constructs Programs
» Data or Task > By Tasks » Data structures » UE management
> Architect Parallel » Task parallelism » Shared data » Thread/Processes
Software * Divide & conquer ¢ Shared queue » Work Group/ltem
 Structure » By Data » Shared coefficient » Synchronization
Patterns e geometric object e barrier
« Computation * Recursive Distributed array * Mutex
Patters * Memory fence

» Communication
* Msg. passing
» Collective comm.

These patterns are summarized from Our Pattern Language (OPL), Tim
Mattson and the book, “Patterns for Parallel Programming” by Mattson et al

Energy Optimization with Parallel
DeSig n Patte rns Structural Patterns:

EXp I 0 |t reg u Iar { Pipe and Filter, MapReduce, Iterator, BSP

— — —— —— — — — — —

I
Model-View-Controller, Puppeteer, <#>| Computation Pattern

paral Iel patterns for Agent-n-Repository, Layered systems, } | P Space I

pOWGF optlmlzatlon | |

In software layer. L l

This work B 3 Y @ —————————— b

Investigates compl ler Algorithm Strategy Pattern Space |

support for low |

power with parallel LS gatebaeont| =~~~ """ "pF5-—————————- ’
deSIQn patternS. *Program structures: {loop parallelism, fork-join, SIMD}

Curre n_tly We are * Data structures: {shared data, shared queue,

Targ eting for shared coefficient object, distributed array}

o Pipe and Filter . N) S —— -
MapReduce . :
lterator Parallel Execution Pattern Space I

J

.o BSP e
224 Shared Coefficient
===z Object

e Cat @ Y < These patterns are summarized from Our Pattern Language (OPL), Tim

' Mattson and the book, “Patterns for Parallel Programming” by Mattson et al

Compiler Directives Support for Pattern-based

Power Optimization

Name
#pragma pattern BSP Powerhint

#pragma pattern filter filter _id

#pragma pattern map on MapReduce
#pragma pattern reduce on MapReduce

#pragma pattern shared_coefficient_allocate
#pragma pattern shared_coefficient_use
#pragma pattern shared_coefficient_powerhint

#pragma pattern puppeteer
#pragma pattern puppet

#pragma pattern Agent-n-Depository
#pragma pattern Depository on Agent-n-Depository
#pragma pattern Deposit_use on Agent-n-Depository

Description

Multi-Threaded-Power-
Gating(MTPG)

Rate-based profiling scheme

Dynamic power management for
early exits processor

Weight-based optimization
scheme for shared coefficient
objects

Power efficient communication
and dvfs for each puppet

Decentralized localization

Examples with Compiler Directives

OSCAR API void main() {
/*Task Code*/
OpenMP R
/*Sleep until someone wakes me

OpenACC up*/

#pragma oscar fvcontrol
\((OSCAR_CPU(), 0)

/*after wakeup do
synchronization

This example is from “OSCAR API for Real-
Time Low-Power Multicores and Its
Performance on Multicores and SMP
Serves”, Keiji Kimuraet.al,, LCPC’09.

Re-visit with Compiler for Power-Gating

= Problem:

In the case of multi-threading environment,
original data flow analysis won’t apply directly.

= It involves In the estimation of “May-Happen-In
Parallel”.

Assume some of parallel design patterns such as
BSP iIs used, compilers can make the problem
-+ possible for management.

18

‘Low Power Optimization on BSP Model
Motivation

= The uncertaincy of multithread programs is a big challenge on power-
gating optimization

= On simultaneous multithreading (SMT) machines, functional units are
shared by concurrent threads

= Simply applying traditional power-gating analyzing methods to
multithreaded programs on SMT machines is improper:

a
a

Time

Threads might mis-powered-off components still used by other threads

Hardware with “self power-on” mechanisms could power on components
internally; however the internal power-on operation could cause processors to
stall, thus resulting in more energy consumption than naive one

Cﬂ Cl cﬂ cl CO Cl

[] Instructions of Thread
[] Instructions of Thread;
E Power-off instruction of Thread;
Power-off instruction of Thread,

Time

Ty Tz

Traditional power-gating techniques Traditional power-gating technigques
adopted in single thread environment adopted in SMT environment

Pattern: BSP Model

Bulk-Synchronous Parallel (BSP) T T T T
model*, proposed by Valiant, is a
bridging model for theory and practice e Borricrs
of parallel computations | Thresdincomputain

o BSP model structures multiple processors - .

with local memory and a global barrier v o ! and waiting phase
synchronous mechanism 2

o Threads processed by processors are
separated by synchronous points, which
forms supersteps

A superstep is consisted by computation phase
and communication phase

e Threads In a superstep start at the same time and end at the same
time; thus the uncertaincy of multithread program is reduced at the
beginning and the ending of a superstep

A barrier (synchronous point)

lime

A barrier (synchronous point)

¢ Valiant, L.G. 1990. A bridging model for parallel computation. Commun. ACM 33, 8, 103-111

LLow Power Optimization on BSP Model
Predicated-Power-Gating Operations

Pseudo code for predicated-power-on
operations

We import the idea of conditional

execution into conventional power-gating lock lel

(pgpl) power-on C1

operations for solving the improper el = rel + 1
power-gating control among a set of pgpl = 0
concurrent threads unlock Icl
Predicated-power-gating (PPG) seudo code for predicated-pover-off
operations are capable to reduce the ook Tel
amount of improper issued power-gating el = rol - 1
Instructions pgpl = (rcl == 0)
The amount of PPG instructions could be (pgplfmﬁgﬁf‘lﬁf ¢l
further reduced by our MTPG analysis
R 5
Contrl Regier (PELPE2 [[peo
Yi-Ping You, Jeng Kuan Lee, Kuo Yu Chang, _1 L‘ Virual ¥y
and Chung-Hsien Wu, “Multi-thread power- PowerGating | 1 b oo [
~.gating control design”, US patent , NO. Controller \ T o Ow{mb | Power-Gating |
. 7904736 BZ, 2007 — :\ Candidate O, ,.-I . 1|\(a1d|date{h I
e)) 0 Y [R

LLow Power Optimization on BSP Model
Multi-Threaded Power-Gating (MTPG)

A Superstep

Thread T, Thread T2

We design a multithreaded power-gating
(MTPG) analysis for properly placing
PPG instructions into BSP programs on
SMT machines

[
I
I
;
MTPG is proceeded on top of the results |
of CADFA* with Sink-N-Hoist® and |
I
I
I
I
I
I
(

MHP analysis®

The basic idea Is to evaluate the power
efficiency with dedicated power model
and information from both CADFA with
Sink-N-Hoist and MHP analysis

h Predicated power-on

— — — — — — — — — — — — — — — — — —"

<::' Predicated power-off

* Yi-Ping You, Chingren Lee, and Jeng Kuen Lee. Compiler analysis and supports for leakage power reduction on

microprocessors. In Proceedings of the International Workshop on Languages and Compilers for Parallel Computing (LCPC’02),

pages 63-73, Washington, D.C., USA, July 2002. Lecture Notes in Computer Science, Vol. 2481, Springer Verlag.

® Yi-Ping You, Chung-Wen Huang, and Jeng Kuen Lee. A Sink-N-Hoist framework for leakage power reduction. In Proceedings of

the ' ACM International Conference on Embedded Software (EMSOFT’05), pages 83-94, Jersey City, New Jersey, USA, September

2005!

N Lo -Rajkishore Barik. Efficient computation of may-happen-in-parallel information for concurrent Java programs. In Languages
~~and'Compilers for Parallel Computing (LCPC’05), volume 4339 of Lecture Notes in Computer Science. Springer-Verlag, 2005.

Pattern: Pipe and Filter

= The program can be decomposed
Into several filters.

= Each filter is a functional unit
performing one or several
computation tasks

= Pipes are used for data
communication
o Can be implemented as a shared

queue, a circular buffer, or inter
procedural communication (IPC)

v 4
= Concurrent execution for Filter4 Filters
Independent filters

= Examples

o Streaming applications, Image
: processing

N

Pipe for data
communicatior

LLow Power for Pipe and Filter

Frequency adjustment

Behavior between two Three basie forms o Rate equations
g - - . pipe and filter

filters is similar as 5.2 5 1t __ 1
producer and consumer a= % " feye/f. Cyelf,

Therefore processor may]’:— - ELZ
stall for buffer (empty or (@). Basic Form A
full) because of the ORI
Imbalance producing rate 3., = &, md = 8y,
and consuming rate 8.0= O, Umdy, . = Oy

()
Extra energy wasted () ()

Developers may try to Oan = Opm UMOa = Opm

solve the rate equations for O

balancing data computation Consurning rate of b

rate (b). One to Many /‘

o Figure out the relation (c) 8,78y 9a= WOpy,
between rate equation and Bpp1 = Ocy 1md, o = O

Bpp2 = B¢ 1lm6bptotal = 0p3

processor frequency 6 G e

o Adjusting voltage &
frequency for balanced rate 0

- S —
equatlon (C). Hierarchical & b%

Producing rate of b, to C,,

6 1/mﬁbptotal = 6bm

cm

Rate-based profiling scheme for power

optimization

Compiler pragma support
for pipe and filter

Rate-based profiling
scheme to figure out
proper voltage &
frequency of each filter
processor

Code transformation

(a).Code Skeleton of Pipe and Filter

#pragma pattern pipe-n-filter f_id(a)
filter_a(Q {
while(true) {
/*User defined producing process*/
producing_function(&DATA);
/*Stall when the buffer is full*/
put_data(f_id(b), &DATA, SIZE);

}
4 }

3 __inspector(f_id(a), END)

—_— i — . — :>_

__inspector(f_id(b), START);
filter_bQ {
while(true) {
/*Stall when the buffer is empty*/
get_data(f_id(a), &DATA, SIZE);
/*User defined consuming process*/
consuming_function(&DATA);

#pragma pattern pipe-n-filter f_id(b)
filter_bQ {
- i while(true) {
/*Stall when the buffer is empty*/
<Zatget data(f_id(a), &DATA, SIZE);
/*User defined consuming process*/
consuming_function(&DATA); }

T }

1
2

=

tn

W o~ >

Input:

1. A : A multicore application with pipe and filter pattern that each

filter 1s already mapping to each processor.

Input: 2. T, : Fitting table which contains the frequency
configurations of each processor.

Data: G=(V,E) : Connection graph

Data: R : Rate equations

Data: 6 : Producing rate or consuming rate of each filter

G <+ build_ connection_graph(A):
foreach edge ¢; € G do

| R; < build_rate_equation(e;):
end
foreach vertex v; € G do

| Oy, < simulation profiling(A);
end
frequency_adjustment (R;, dy,. T¢):

(b). Code transformation for profiling instrumentation

__inspector(f_id(a),START);
filter_a(Q {
while(true) {
/*User defined producing process*/
producing_function(&DATA);
/*Stall when the buffer is full*/
put_data(f_id(b), &DATA, SIZE);

(c). Frequency adjustment after profiling

__ frequency_adjustment(f_id(a));
filter_a(Q {
while(true) {
/*User defined producing process*/
producing_function(&DATA);
/*Stall when the buffer is full
put_data(f_id(b),&DATA, SIZE);

:>_

_ frequency_adjustment(f_id(b));
filter_bQ {
while(true) {
/*Stall when the buffer is empty*/
get_data(f_id(a), &DATA, SIZE);
/*User defined consuming process*/
consuming_function(&DATA);

}

'.} __inspector(f_id(b), END) 3

SID-Based Multicore Power Simulator

o Configurable Heterogeneous
Multicore Environment

Evaluation Environment

Semaconductin Design 1P Revedis, Microprocessars, Worldwide, 2010 and 2011 (Milions of Dollars)

= Andes™ Core N1213 as MPU

= A number of PAC-DSPs (from
ITRI)

= Other peripherals

Power Modeling Tool is
based on PowerMixer'?
o Hierarchal Power Profiling Support

Tl

617.5

2011 Cumulatme
Feank Cmpany a1 2011 Growih Shara Ehare
1 ARM Haokdngs 4907 G348 W% M B43%
J MPS Technshagiss B5.] 121 -15.5% a5% B3
3 Tenzila 113 135 142% 18% 05T
4 Simopsrs i.1 Bl 11.1% 1% B %%
: A8 Technmingy 33 15 5% 0E% OT4W :|
f Tons 10 L) TI% g TElR|
1 Casl i7 21 208% 0.3% B Ty
B Wastam Daesign Canker 17 16 10 0% 0.2% 0E 5%
f§ Meldaus f.d 14 HA 024 B8 T
] Tiempa 15 11 -13.3% 0.2% g o
Cihers L s 4% 11% 100.0%

7531

20% 100.0% 100.0%

Fle Edit Refactor Nevigate Search Project

S [T] Multicare.
by~ €

| power CU ‘h 1A l-

= &% Goe Debugger (

- 1A I.‘ PACDSP ’—
- 1A |, PACDSP !\
s e _—
LA |. PACDSP i..
| —

- 1A I. PACDSP]~\
= 1A l'

< [
(300,300 20m0p - 9om

licatic
gger (PAC) (2009721 £F 11:50)

20097721 EF 1150)

Interconnection Model

|}
LCDC [o =

i SID

(2009721 £F 1149)

SID Process i
B SID: frootiworkspace/ Multicore_ pac_linux |

| |
| B
socket iobase:
Select Config file: | i
Irootiworkspace/ Multicore_ sipac_linux.conf 5

Run Window Help

[3v | B Ov Qv [P B i e
IPC \N %5 Debug 22 = 060 vanables R I Registers B2
= — B als xx~ E
I [- | ® ™ e inti = 39644 =
™ — - —m 1 [CIC++ Local Application] 0 Init data =0

536543232

&) o

52 test_interrupt_DSPO():

53 =0
54 while(DEMO_O1_sddress==S0)
w {

Probiems | B consote 23

|socketio: accepted conmection frem 127.0.0.1:38076, rd 22

Writable. Smart Insert 47:5

eo0008Zec <mainsdsa: jal

= O || [} Disassembly 52 .

8 <mainidds: jal
dnit_all_0SP():

1 $ra, 250
i $rd, [$r5a30]

sl GxS3ed <start DSPOL>

sl G494 <test_interrupt O

i 405,80
w1 §r5, [$pers]

r4v = 8| B console =4

SID

B
=g

e

From EE Times

, ~ * Power Aware SID-based Simulator for Embedded Multicore DSP Subsystems, Lin et. al, CODES+1SSS’10.

The Compilation and Simulation Flow

Source Code

Open64 based VLIW DSP :_
Compller [Front end |

e pragma processing

o Optimizations for distributed ‘

register architecture " WHIRL Level Power 5
o Pragma support for pattern- Ty T <
eve IMIZErs
based power optimizations (IPA, WOPT, LNO.) &
\ y y yro y (o))
o WHIRL-level Power , N 5
Instrumentation IR Lowering £
A4 5
(~ «CGIR Optimizations) =
Name Description « EBO optimizations o
#pragma power_profiling function_name Power profiling a specific function. . Register Allocation
#pragma power_profiling for Power profiling a specific for loop. e Instruction
#pragma power_profiling while Power profiling a specific for a _ Scheduling
while loop. G
#pragma power_profiling section Power profiling a user defined

code section between { }. Code Emission
Compiler Directives for Low Power with Parallel Patterns

J
#pragma pattern filter filter_id() Executable COde :>

ultacore
#pragma pattern map on MapReduce -POWGI’
#pragma pattern reduce on MapReduce Simulator

Related Work: Programming Model Supports

OpenStream
o A Stream programming model for OpenMP
o Decoupled, producer/consumer task-parallel pipelines

o *OpenStream: Expressiveness and Data-Flow
Compilation of OpenMP Streaming Programs, Albert
Cohenetal.,, TACO’ 13

WeakRB (Weak consistency Ring Buffer)

o An improved Single-producer, single-consumer
(SPSC) FIFO with a portable C11 implementation

o “Bringing Together FIFO Queues and Dynamic
Scheduling for the Correct and Efficient Execution of
Task-Parallel, Data Flow Programs”, Alber Cohen et
al., CPC’13

Pattern: MapReduce

Also used in cloud Map
computing for data

intensive task on |
distributed large scale
systems™ |

Decomposes task into

two phases
0 Map map()| map()| map() | map() | map() | map() | map() | map()

User defined map

function fOI‘ Independent | core: | corez | cores| core4| cores| corEs | cORE7 | cOREs
computation task

o Reduce
User defined reduce
function collecting and

summarizing the results Reduce
from map function

*MapReduce: simplified data processing on large clusters, Jeffer Dean, etc., In Proceedings of the 6t
conference on Symposium on Operating System Design and Implementation, OSDI°’04, 2004

LLow Power for MapReduce with Iterator

Some early returned
processors may spend extra >
power for waiting the next
Iteration

Dynamic Power
Management (DPM) for
such processors

o Saving power of the idling
Processors

Map

Reduce

Iterator

Power Management Scheme for
MapReduce with Iterator

Input:

E ar I y eX It O ptl m I Z atl O n :.s;s::éclﬁiz lfyn. each processor P; will execute a map function,
CO m i |er ra ma Su O r t 2. T; | =i=l,...,n., the waiting time of the early exists processor P; at
reduction stage.
p p g p p 3. Tawe | The average waiting time of each processor at reduction stage.

for M ap Red u Ce With I te rato r 3. P,y | Power consumption of processor P; at original running

mode.
4. P(,, ;) | Power consumption of processor P; after configured to low

MapReduce runtime With power running mode.

5. E, | Energy overhead for running mode configuration.

dyn am i C power 1 fureac,h P; that early exits from the map function do
management Ly e

if (Pn) * T+Eo) < P ;) * T" then
o Running mode configuration & | e e
for early returned processors ¢ oid set_power_mode (Processor)
8 {set Processor into low power running mode according to the hardware

Code skeleton specification; }

(]

L]

#pragma pattern map on MapReduce #pragma pattern reduce on MapReduce
map(intermediate_key, input value) { reduce(intermediate_key, intermediate result) {
/*User defined steps /*User defined steps

- _ to summarize the intermediate results
to compute the intermediate results ¢ "o map function*/
from input value*/ ..

}

Preliminary Results: Object Detection

Multicore object
detection
application

o Detecting the

target object from
the Input video

o Parallelized by

L

[G.in | G id | G5 o | o i | s, .)I(.)I(|)|< I)l

7 7 Map

mm/f/l/ v 1 \ \\ll

1. Conduct brightness test(mean number) . Rcturn a andtWC SAD score if failed.
2. Conduct brightness test (variance number). Return a negative SAD score if

failed.

3. Compare the input image with object models. Return a negative SAD score if
failed.

4, Compute and return a positive representative SAD score to represent we
recognize the object.

|\/|ap Reduce Wlth DSPI\ D"i “Si’* 074 71)5 ;PG/DSP?/ DSP8
Iterator pattern
Iterator " Reduce
Each map function | [san | S‘D | sap, | S\D | S\D | sap, | SAD, | Su)
is mapping on each o MPU

PAC-DSP
Iterative execution
until finishing all
frames

Every map function will go through four
conditions to calculate the sum of absolute
differences (SAD) score in order to determine if
the target object exists in the input scope.

Pattern: Shared Coefficient Object

(a). Multicore RMS: Code fragment at MPU site

//Shared coefficient objects
#pragma pattern shared_coefficient_allocate

Shared Co-efficient Object — Facetover facenoden;
. . wgw= - . Reye MODEL reyemodel;
o First initialized in the R TR
int SlideWinSearching(...)
external shared memory {

//Data initiation
face_model_init(facemodel);

o Accessed by the parallel leye_nodel_init(leyenodel):
reye_model _init(reyemodel);
taSkS Simultaneous|y start_DSP(); /*Perform RMS with 8 DSPs*/
3
o Frequently used In
embedded mu Iticore (b). Multicore RMS: Code fragment at DSP site
1 1 # tt hared fficient
applications Face MODEL *facemodel: T
o Leye MODEL *leyemodel;
|mage ReCOgn|t|0n Reye MODEL *reyemodel ;
Applications int CheckSlideWindow(. . .)
{
I it /*A 1 ith shared coefficient object */
Voice Recognition Lo e i oot ictnt it e
Applications for(i=0; i<e_num; i++)

for (J=0; j < p_num; jJ++){
model[i] += facemodel->EigenVec[i*p_num+j] *
(window[j] — facemodel->Mean[j]);
}

Ru%ming Example: A multicore RMS application with
shared coefficient object

Power Optimization for Shared

Coefficient Object

Power Optimization
with Data
|_ocalization

o Make good use of

local memory of
each processor

o Reduce External
Memory Accessing

o Weight-based
algorithm

O

Input: 1. Coeff; li=1,...,n; 2. Aval_Local_Size.
Data: 1. candidate_list: 2. Cand,—p=1,....n.
Output: Assignment of coefficient object to local memory.

foreach Coeff; do

| candidate_list +— (access_counts_calculation(Ceeff;). Coeff;):
end
Sort candidate_list in decreasing order according to the access counts of each
coefficient object Cand,,. that (Cand ,—p=1....n)€ candidate_list.

5 while Aval_local_Size is not empty and Aval_local_Size > size(Cand iy) do
6 for p +— 1 to n do

7 if Aval_local_Size > sizeof{Cand,,) then

8 Assign Cand, to local memory:

9 pt+:

10 Aval_local_Size + Aval_local_Size - size(Candp);
11 else

12 | pt+

13 end

14 end

15 end

local local local

DSP1 DSP2 DSPx

System Bus

Shared Memory

Compiler Directives Support for Pattern-based

Power Optimization

Name
#pragma pattern BSP Powerhint

#pragma pattern filter filter _id

#pragma pattern map on MapReduce
#pragma pattern reduce on MapReduce

#pragma pattern shared_coefficient_allocate
#pragma pattern shared_coefficient_use
#pragma pattern shared_coefficient_powerhint

#pragma pattern puppeteer
#pragma pattern puppet

#pragma pattern Agent-n-Depository
#pragma pattern Depository on Agent-n-Depository
#pragma pattern Deposit_use on Agent-n-Depository

Description

Multi-Threaded-Power-
Gating(MTPG)

Rate-based profiling scheme

Dynamic power management for
early exits processor

Weight-based optimization
scheme for shared coefficient
objects

Power efficient communication
and dvfs for each puppet

Decentralized localization

Summary

We present compiler techniques for low power.

Pattern-based energy optimization method is presented
o Pipe and Filter

o MapReduce + Iterator

o BSP

o Shared Coefficient Object

Significant power reduction is observed from preliminary
results

Power optimizations with parallel patterns can be an important
direction for power optimization in the software layer.

Related references can be seen In
http://www.cs.nthu.edu.tw/~jklee

http://www.cs.nthu.edu.tw/~jklee

	Compilers for Low Power With Parallel Design Patterns on Embedded Multicore Systems
	Outline
	Low Power Design
	Compilers for Power-Gating (Static Power)
	Component Activity Data-Flow Analysis
	Compact Power-Gating Control Placement
	投影片編號 7
	Results: Total Power Reduction
	The Low Power Hardware Design Trend
	VLIW DSP with Distributed Register Files
	Compiler Support for Low-Power with GPUs
	Outline
	Design Patterns
	Parallel Design Patterns
	Energy Optimization with Parallel Design Patterns
	Compiler Directives Support for Pattern-based Power Optimization
	Examples with Compiler Directives
	Re-visit with Compiler for Power-Gating
	Low Power Optimization on BSP Model�Motivation
	Pattern: BSP Model
	Low Power Optimization on BSP Model�Predicated-Power-Gating Operations
	Low Power Optimization on BSP Model�Multi-Threaded Power-Gating (MTPG)
	Pattern: Pipe and Filter
	Low Power for Pipe and Filter
	Rate-based profiling scheme for power optimization
	Evaluation Environment
	The Compilation and Simulation Flow
	Related Work: Programming Model Supports
	Pattern: MapReduce
	Low Power for MapReduce with Iterator
	Power Management Scheme for MapReduce with Iterator
	Preliminary Results: Object Detection
	Pattern: Shared Coefficient Object
	Power Optimization for Shared Coefficient Object
	Compiler Directives Support for Pattern-based Power Optimization
	Summary

