
Compilers for Low Power With
Parallel Design Patterns on

Embedded Multicore Systems

Jenq Kuen Lee
Kenny Lin Wen-Li Shih
Department of Computer Science
National Tsing Hua University
Hsinchu, Taiwan

Outline

 History: Compilers for Low-Power
 Pattern-Based Power Optimizations
 BSP Model
 Producer-N-Consumer
 MapReduce
 Coefficient Objects

 Experiments
 Conclusion

Low Power Design

 Power optimization are needed at
all levels.

 Higher levels of application and
system layer impact the power
decision most.

 Software for Low-Power
 Applications
 OS
 Compilers
 Runtime Systems
 Power Simulator

Source: Massoud Pedram, USC

Compilers for Power-Gating
(Static Power)

 Compiler frameworks
employ power-gating
instructions to reduce static
powers

 To turn off useless
components in processors

 Use compiler analysis
techniques to analyze
program behaviors

Power Gating Control
Register (64bits)

PC

P
C

 - 4

P
C

 +
 4

P
C

 +
 8

...

Instruction
Decoder

Instruction Bus
(32bits)

Integer
Multiplier

Floating Point
Multiplier

Floating Point
Divider

Floating Point
Adder

Integer Registers
(64bits x 32)

Integer ALU/
Normal

Operation

Floating Point Registers
(64bits x 32)

Program Counter

Micro Codes

Constant
Supplying
Voltage

Input/Output
(64bits)

3
2
b
its

Input/Output
(64bits)

Input/Output
(64bits)

“Compilers for Leakage Power Reductions, Yi-Ping You, Ching-Ren
Lee, Jenq-Kuen Lee, ACM Transactions on Design Automation of
Electronic Systems, Jan. 2006.

http://pllab.cs.nthu.edu.tw/~jklee/papers/todaes.pdf

Component Activity Data-Flow Analysis
 Compiler frameworks employ power-gating instructions to reduce static

powers.
 Use compiler analysis techniques to analyze program behaviors.
 To turn off useless components in processors.
 Wake up the components ahead of time considering the cycles needed

for components to be ready.
 Consider Break-Even point/cost-model and incorporate edge profiling

and branching situations.
 Suggest possible ways to work with Out-of-Order architectures.

Yi-Ping You, Chingren Lee,
and Jenq Kuen Lee. Compiler
analysis and supports for
leakage power reduction on
microprocessors. In
(LCPC’02), pages 63–73,

Compact Power-Gating Control Placement

 The amount of power-gating instructions being added
increases as the increasing amount of components
equipped with power-gating control.

 Solution: code motion of power-gating instructions
 “sink” power-off instructions
 “hoist” power-on instructions

PowerOn FP_ALU

PowerOn FP_Mul.

PowerOff FP_Mul.

PowerOff FP_ALU

PowerOn FP_Div

PowerOff FP_Div.

PowerOn FP_ALU, FP_Mul., FP_Div.

PowerOff FP_ALU, FP_Mul., FP_Div.

 FP ALU FP Div.FP Mul.

 FP ALU FP Div.FP Mul.

 FP ALU FP Div.FP Mul.

 FP ALU FP Div.FP Mul.

 FP ALU FP Div.FP Mul.

 FP ALU

 FP ALU

 FP Div.

 FP Div.

FP Mul.

FP Mul.

 FP ALU FP Div.FP Mul.

 FP ALU FP Div.FP Mul.

 FP ALU FP Div.FP Mul.

 FP ALU FP Div.FP Mul.

 FP ALU FP Div.FP Mul.

 FP ALU FP Div.FP Mul.

 FP ALU FP Div.FP Mul.

 FP ALU FP Div.FP Mul.

 FP ALU FP Div.FP Mul.

 FP ALU FP Div.FP Mul.

 FP ALU FP Div.FP Mul.

 FP ALU FP Div.FP Mul.

 FP ALU

 FP ALU

 FP Div.

 FP Div.

FP Mul.

FP Mul.

Ti
m

e

COMPONENT IN USE

COMPONENT NOT IN USE

Yi-Ping You, Chung-Wen
Huang, and Jenq Kuen Lee.
A Sink-N-Hoist framework
for leakage power
reduction. In Proceedings of
the ACM International
Conference on Embedded
Software (EMSOFT’05),
pages 83–94, Jersey City,
New Jersey, USA,
September 2005.

7

Leakage Power Reduction Framework
i. ICFG construction

ii. Component-Activity Data-Flow Analysis

iii. Power-gating instruction scheduling

iv. Sink-N-Hoist Analysis

v. Power-gating instruction generation
“A Sink-N-Hoist Framework for Leakage Power Reduction”,

Yi-Ping You, C. W. Huang, Jenq-Kuen Lee, ACM EMSOFT, Sep. 2005.
(Also extended version in ACM TODAES 2007)

http://pllab.cs.nthu.edu.tw/~jklee/papers/1568962864-you.pdf
http://pllab.cs.nthu.edu.tw/~jklee/papers/1568962864-you.pdf
http://pllab.cs.nthu.edu.tw/~jklee/papers/1568962864-you.pdf
http://pllab.cs.nthu.edu.tw/~jklee/papers/1568962864-you.pdf
http://pllab.cs.nthu.edu.tw/~jklee/papers/1568962864-you.pdf

8

Results: Total Power Reduction

0%

2%

4%

6%

8%

10%

12%

To
ta

l E
ne

rg
y

Re
du

ct
io

n

matr
ix

comp
lex_u

pdate
conv

olutio
n

dot_p
rodu
ct
fir2d
im fir

irr_b
iquad

_N_s
ectio

ns

irr_b
iquad

_one
_sec

tion lms
matr
ix 1x

3
matr
ix

n_co
mple

x_up
dates

n_re
al_up

dates
real_

upda
te
avera

ge

CADFE CADFE w/Sink-N-Hoist

The Low Power Hardware Design Trend
 Power Gating

Architecture
 ARM Cortex A9 MPCore

 Different Power Domains
 Up to 14 Power Domains

 Cortex-A9 processors(4)
 Data Engine(4)
 Processors Cache and

TLB RAMs(4)
 SCU duplicated TAG

RAMs
 SCU logic cells and

private peripherals
 Power Gating

 Four running modes
 Run, Standby,

Dormant, Shutdown
 Fine-grained pipeline

shutdown
 Faster register save

and restore

Cortex-A9 MPCore power domains and clamps*

*source: ARM, Cortex-A9 Mpcore Technical Reference Manual

VLIW DSP with Distributed Register Files

A VLIW DSP compiler for distributed register
files to match the effort

 PALF scheduling policies for ILP (CPC 2006)
 GRA scheme for distributed register files

(CPC 2007)
 Register spills among distributed register

banks (CPC 2009)
 SIMD compiler optimizations with intrinsics

(CPC 2010)

Public Ping-Pong RF

Custmoized
FU

Arithmetic Unit

Custmoized
FU

Load/Store Unit

Private RF

Private RF

Memory Subsystem

Accelerators

Public Ping-Pong RF

Custmoized
FU

Arithmetic Unit

Custmoized
FU

Load/Store Unit

Private RF

Private RF

Cluster 1 Cluster 2

VLIW Data Path

DSP Kernel
Customized

Function Units

Const
RF

Const
RF

Bus Interface Unit

Dispatch Unit

Scalar Unit

RF

Scalar Unit

Program Sequence
Control Unit

Interrupt
Handler

•Distributed Register Files
•Cluster register files
•Local RF Accessible Only by
Dedicated FU
•M-I Pair Access Limited by
Ping-pong Switches
 •Maximal 2 Read Ports + 1
Write Port
 Low cost and low power

 Compare with Centralized
Register File
 Area : 76.8% area are saved
 Access Time : 46.9% access

time are saved

Compiler Support for Low-Power with GPUs
 Register files consume 15%-20% of GPU dynamic energy –

an attractive target to optimize.
 Energy-efficient register file designs:

 Hierarchical register file (HRF [1, 2]) with compiler
register allocation – 54% energy reduction on RFs

 Compiler supports are needed for a three-level register file:
 Main register file (MRF):

- Entries/thread for storing thread contexts
- The biggest and the least energy-efficient

 Operand register file (ORF):
- Entries/thread for data with frequent reads
- Medium size and energy-efficiency

 Last result file (LRF):
- Entry with thread for immediate read after write
- The smallest and most energy-efficient

 Re-allocate (replacement) data which were allocated to
MRF to LRF or ORF whenever it is suitable.

[1] Energy-efficient mechanisms for managing thread context in
throughput processors. Mark Gebhart et. al, ISCA 2011.
[2] A compile-time managed multi-level register file hierarchy. Mark
Gebhart et. al, MICRO 2011. Reference from [2]

Main Register File (MRF)
Banked with 1R1W

Operand Buffering

Operand Routing

Operand RF (ORF)
Banked w/ 3R1W

Last Result File (LRF)

ALU
S
F
U

M
E
M

T
E
X

Outline

 Compilers for Low-Power
 Pattern-Based Power Optimizations
 BSP Model
 Producer-N-Consumer
 MapReduce
 Coefficient Objects

 Experiments
 Conclusion

Design Patterns

 Brief introduction to design patterns
 Proposed by C. Alexander for city planning and architecture.
 Introduced to software engineering by Beck and Cunningham.
 Become prominent in object-oriented programming by GoF.

 Design patterns describe “good solutions” to
recurring problems in a particular context.
 Patterns for object-oriented programming

 Creational patterns, Structural patterns, Behavioral patterns, etc.
 Patterns for limited memory systems

 Compression, Small data structures, Memory allocation, etc.
 Patterns for parallel programming

 Finding concurrency, Algorithm structure, Supporting
structures and Implementation mechanisms.

Parallel Design Patterns
 Parallelization can be a process to transform problems

to programs by selecting appropriate patterns.

These patterns are summarized from Our Pattern Language (OPL), Tim
Mattson and the book, “Patterns for Parallel Programming” by Mattson et al

Decomposition of
problems

 Data or Task
 Architect Parallel

Software
• Structure

Patterns
• Computation

Patters

Finding
Concurrency

Algorithm
Structure

Supporting
Structures

Implementation
Mechanisms

Appropriate
Algorithms

 By Tasks
• Task parallelism
• Divide & conquer

 By Data
• geometric
• Recursive

Program
Constructs

 Data structures
• Shared data
• Shared queue
• Shared coefficient

object
• Distributed array

Parallelized
Programs

 UE management
• Thread/Processes
• Work Group/Item

 Synchronization
• barrier
• Mutex
• Memory fence

 Communication
• Msg. passing
• Collective comm.

Energy Optimization with Parallel
Design Patterns

 Exploit regular
parallel patterns for
power optimization
in software layer.

 This work
investigates compiler
support for low
power with parallel
design patterns.

 Currently We are
Targeting for
 Pipe and Filter
 MapReduce
 Iterator
 BSP
 Shared Coefficient

Object
These patterns are summarized from Our Pattern Language (OPL), Tim

Mattson and the book, “Patterns for Parallel Programming” by Mattson et al

Compiler Directives for Low Power with Parallel Patterns

Name Description
#pragma pattern BSP Powerhint Multi-Threaded-Power-

Gating(MTPG)
#pragma pattern filter filter_id Rate-based profiling scheme
#pragma pattern map on MapReduce
#pragma pattern reduce on MapReduce

Dynamic power management for
early exits processor

#pragma pattern shared_coefficient_allocate
#pragma pattern shared_coefficient_use
#pragma pattern shared_coefficient_powerhint

Weight-based optimization
scheme for shared coefficient
objects

#pragma pattern puppeteer
#pragma pattern puppet

Power efficient communication
and dvfs for each puppet

#pragma pattern Agent-n-Depository
#pragma pattern Depository on Agent-n-Depository
#pragma pattern Deposit_use on Agent-n-Depository

Decentralized localization

Compiler Directives Support for Pattern-based
Power Optimization

Examples with Compiler Directives

 OSCAR API
 OpenMP
 OpenACC

void main() {
 /*Task Code*/
 …
 /*Sleep until someone wakes me
up*/

#pragma oscar fvcontrol
\((OSCAR_CPU(), 0)

/*after wakeup do
synchronization
…

This example is from “OSCAR API for Real-
Time Low-Power Multicores and Its
Performance on Multicores and SMP
Serves”, Keiji Kimura et.al, , LCPC’09.

Re-visit with Compiler for Power-Gating

 Problem:
 In the case of multi-threading environment,

original data flow analysis won’t apply directly.
 It involves in the estimation of “May-Happen-In

Parallel”.

Assume some of parallel design patterns such as

BSP is used, compilers can make the problem
possible for management.
 18

Low Power Optimization on BSP Model
Motivation
 The uncertaincy of multithread programs is a big challenge on power-

gating optimization
 On simultaneous multithreading (SMT) machines, functional units are

shared by concurrent threads
 Simply applying traditional power-gating analyzing methods to

multithreaded programs on SMT machines is improper:
 Threads might mis-powered-off components still used by other threads
 Hardware with “self power-on” mechanisms could power on components

internally; however the internal power-on operation could cause processors to
stall, thus resulting in more energy consumption than naïve one

Pattern: BSP Model

 Bulk-Synchronous Parallel (BSP)
model♦, proposed by Valiant, is a
bridging model for theory and practice
of parallel computations
 BSP model structures multiple processors

with local memory and a global barrier
synchronous mechanism

 Threads processed by processors are
separated by synchronous points, which
forms supersteps
 A superstep is consisted by computation phase

and communication phase
 • Threads in a superstep start at the same time and end at the same

time; thus the uncertaincy of multithread program is reduced at the
beginning and the ending of a superstep

♦ Valiant, L.G. 1990. A bridging model for parallel computation. Commun. ACM 33, 8, 103-111

Low Power Optimization on BSP Model
Predicated-Power-Gating Operations
 We import the idea of conditional

execution into conventional power-gating
operations for solving the improper
power-gating control among a set of
concurrent threads

 Predicated-power-gating (PPG)
operations are capable to reduce the
amount of improper issued power-gating
instructions

 The amount of PPG instructions could be
further reduced by our MTPG analysis

 lock lc1
(pgp1) power-on C1
 rc1 = rc1 + 1
 pgp1 = 0
 unlock lc1

Pseudo code for predicated-power-on
operations

Pseudo code for predicated-power-off
operations

 lock lc1
 rc1 = rc1 - 1
 pgp1 = (rc1 == 0)
(pgp1) power-off C1
 unlock lc1

Yi-Ping You, Jeng Kuan Lee, Kuo Yu Chang,
and Chung-Hsien Wu, “Multi-thread power-
gating control design”, US patent , NO.
7904736 B2, 2007

Low Power Optimization on BSP Model
Multi-Threaded Power-Gating (MTPG)
 We design a multithreaded power-gating

(MTPG) analysis for properly placing
PPG instructions into BSP programs on
SMT machines

 MTPG is proceeded on top of the results
of CADFA♦ with Sink-N-HoistΘ and
MHP analysisΦ

 The basic idea is to evaluate the power
efficiency with dedicated power model
and information from both CADFA with
Sink-N-Hoist and MHP analysis

♦ Yi-Ping You, Chingren Lee, and Jenq Kuen Lee. Compiler analysis and supports for leakage power reduction on
microprocessors. In Proceedings of the International Workshop on Languages and Compilers for Parallel Computing (LCPC’02),
pages 63–73, Washington, D.C., USA, July 2002. Lecture Notes in Computer Science, Vol. 2481, Springer Verlag.
Θ Yi-Ping You, Chung-Wen Huang, and Jenq Kuen Lee. A Sink-N-Hoist framework for leakage power reduction. In Proceedings of
the ACM International Conference on Embedded Software (EMSOFT’05), pages 83–94, Jersey City, New Jersey, USA, September
2005.
Φ Rajkishore Barik. Efficient computation of may-happen-in-parallel information for concurrent Java programs. In Languages
and Compilers for Parallel Computing (LCPC’05), volume 4339 of Lecture Notes in Computer Science. Springer-Verlag, 2005.

Pattern: Pipe and Filter

 The program can be decomposed
into several filters.

 Each filter is a functional unit
performing one or several
computation tasks

 Pipes are used for data
communication
 Can be implemented as a shared

queue, a circular buffer, or inter
procedural communication (IPC)

 Concurrent execution for
independent filters

 Examples
 Streaming applications, Image

processing

Filter1 Filter2

Filter3

Filter4 Filter5

Pipe for data
communication

Low Power for Pipe and Filter
 Behavior between two

filters is similar as
producer and consumer

 Therefore processor may
stall for buffer (empty or
full) because of the
imbalance producing rate
and consuming rate

 Extra energy wasted
 Developers may try to

solve the rate equations for
balancing data computation
rate
 Figure out the relation

between rate equation and
processor frequency

 Adjusting voltage &
frequency for balanced rate
equation

24

a b

(a). Basic Form

a

b1

b2

b3

bm

…

(b). One to Many

C1

C2

Cm

a b

(C). Hierarchical

Three basic forms of
pipe and filter

δa = δb

δa1 = δb1
δa2 = δb2
δa3 = δb3
 ...
δam = δbm

…

δa = δbc
δbp1 = δc1
δbp2 = δc2
 ...
δbpm = δcm

1/mδatotal = δb1
1/mδatotal = δb2
1/mδatotal = δb3
 ...
1/mδatotal = δbm

δa = αδbptotal
1/mδbptotal = δb2
1/mδbptotal = δb3
 ...
1/mδbptotal = δbm

Rate equations
Frequency adjustment

Consuming rate of b

Producing rate of bm to Cm

#pragma pattern pipe-n-filter f_id(a)
filter_a() {
 while(true) {
 /*User defined producing process*/
 producing_function(&DATA);
 /*Stall when the buffer is full*/
 put_data(f_id(b), &DATA, SIZE);
 }
}

#pragma pattern pipe-n-filter f_id(b)
filter_b() {
 while(true) {
 /*Stall when the buffer is empty*/
 get_data(f_id(a), &DATA, SIZE);
 /*User defined consuming process*/
 consuming_function(&DATA);
 }
}

(a).Code Skeleton of Pipe and Filter

__inspector(f_id(b), START);
filter_b() {
 while(true) {
 /*Stall when the buffer is empty*/
 get_data(f_id(a), &DATA, SIZE);
 /*User defined consuming process*/
 consuming_function(&DATA);
 }
}
__inspector(f_id(b), END)

(b). Code transformation for profiling instrumentation
__inspector(f_id(a),START);
filter_a() {
 while(true) {
 /*User defined producing process*/
 producing_function(&DATA);
 /*Stall when the buffer is full*/
 put_data(f_id(b), &DATA, SIZE);
 }
}
__inspector(f_id(a), END)

__frequency_adjustment(f_id(b));
filter_b() {
 while(true) {
 /*Stall when the buffer is empty*/
 get_data(f_id(a), &DATA, SIZE);
 /*User defined consuming process*/
 consuming_function(&DATA);
 }
}

(c). Frequency adjustment after profiling
__frequency_adjustment(f_id(a));
filter_a() {
 while(true) {
 /*User defined producing process*/
 producing_function(&DATA);
 /*Stall when the buffer is full
 put_data(f_id(b),&DATA, SIZE);
 }
}

Rate-based profiling scheme for power
optimization
 Compiler pragma support

for pipe and filter
 Rate-based profiling

scheme to figure out
proper voltage &
frequency of each filter
processor

Code transformation

Evaluation Environment SID-Based Multicore Power Simulator
 Configurable Heterogeneous

Multicore Environment
 AndesTM Core N1213 as MPU
 A number of PAC-DSPs (from

ITRI)
 Other peripherals

 Power Modeling Tool is
based on PowerMixerIP

 Hierarchal Power Profiling Support

* Power Aware SID-based Simulator for Embedded Multicore DSP Subsystems, Lin et. al, CODES+ISSS’10.

From EE Times

The Compilation and Simulation Flow
 Open64 based VLIW DSP

compiler
 Optimizations for distributed

register architecture
 Pragma support for pattern-

based power optimizations
 WHIRL-level Power

Instrumentation

Source Code

Front end
• pragma processing

WHIRL Level Power
Instrumentation

WHIRL Level Optimizers
(IPA, WOPT, LNO,…)

IR Lowering

• CGIR Optimizations
• EBO optimizations
• Register Allocation
• Instruction
Scheduling

Code Emission

MultiCore
Power

Simulator

Po
w

er
 P

ro
fil

in
g

Fe
ed

ba
ck

Executable Code

Related Work: Programming Model Supports

 OpenStream
 A Stream programming model for OpenMP
 Decoupled, producer/consumer task-parallel pipelines
 *OpenStream: Expressiveness and Data-Flow

Compilation of OpenMP Streaming Programs, Albert
Cohen et al., TACO’ 13

 WeakRB (Weak consistency Ring Buffer)
 An improved Single-producer, single-consumer

(SPSC) FIFO with a portable C11 implementation
 “Bringing Together FIFO Queues and Dynamic

Scheduling for the Correct and Efficient Execution of
Task-Parallel, Data Flow Programs”, Alber Cohen et
al., CPC’13

Pattern: MapReduce
 Also used in cloud

computing for data
intensive task on
distributed large scale
systems*

 Decomposes task into
two phases
 Map

 User defined map
function for independent
computation task

 Reduce
 User defined reduce

function collecting and
summarizing the results
from map function

*MapReduce: simplified data processing on large clusters, Jeffer Dean, etc., In Proceedings of the 6th
conference on Symposium on Operating System Design and Implementation, OSDI’04, 2004

Low Power for MapReduce with Iterator

 Some early returned
processors may spend extra
power for waiting the next
iteration

 Dynamic Power
Management (DPM) for
such processors
 Saving power of the idling

processors

Map

Reduce

Iterator

DPM

Power Management Scheme for
MapReduce with Iterator
 Early exit optimization
 Compiler pragma support

for MapReduce with Iterator
 MapReduce runtime with

dynamic power
management
 Running mode configuration

for early returned processors

#pragma pattern map on MapReduce
map(intermediate_key, input_value) {

 /*User defined steps
 to compute the intermediate results
 from input value*/
…

 }

#pragma pattern reduce on MapReduce
reduce(intermediate_key, intermediate_result) {

/*User defined steps
 to summarize the intermediate results

 from each map function*/
…

 }

Code skeleton

Every map function will go through four
conditions to calculate the sum of absolute
differences (SAD) score in order to determine if
the target object exists in the input scope.

Preliminary Results: Object Detection
 Multicore object

detection
application
 Detecting the

target object from
the input video

 Parallelized by
MapReduce with
Iterator pattern
 Each map function

is mapping on each
PAC-DSP

 Iterative execution
until finishing all
frames

Running Example: A multicore RMS application with
shared coefficient object

Pattern: Shared Coefficient Object

 Shared Co-efficient Object
 First initialized in the

external shared memory
 Accessed by the parallel

tasks simultaneously
 Frequently used in

embedded multicore
applications
 Image Recognition

Applications
 Voice Recognition

Applications

//Shared coefficient objects
#pragma pattern shared_coefficient_allocate
Face_MODEL facemodel;
Leye_MODEL leyemodel;
Reye_MODEL reyemodel;

int SlideWinSearching(...)
{
 //Data initiation
 face_model_init(facemodel);
 leye_model_init(leyemodel);
 reye_model_init(reyemodel);
 start_DSP(); /*Perform RMS with 8 DSPs*/
}

#pragma pattern shared_coefficient_use
Face_MODEL *facemodel;
Leye_MODEL *leyemodel;
Reye_MODEL *reyemodel;

int CheckSlideWindow(...)
{
 /*A loop with shared coefficient object access*/
 #pragma pattern shared_coefficient_powerhint
 for(i=0; i<e_num; i++)
 fOr (j=0; j < p_num; j++){
 model[i] += facemodel->EigenVec[i*p_num+j] *
 (window[j] – facemodel->Mean[j]);
 }
}

(a). Multicore RMS: Code fragment at MPU site

(b). Multicore RMS: Code fragment at DSP site

Power Optimization for Shared
Coefficient Object
 Power Optimization

with Data
Localization
 Make good use of

local memory of
each processor

 Reduce External
Memory Accessing

 Weight-based
algorithm

Compiler Directives for Low Power with Parallel Patterns

Name Description
#pragma pattern BSP Powerhint Multi-Threaded-Power-

Gating(MTPG)
#pragma pattern filter filter_id Rate-based profiling scheme
#pragma pattern map on MapReduce
#pragma pattern reduce on MapReduce

Dynamic power management for
early exits processor

#pragma pattern shared_coefficient_allocate
#pragma pattern shared_coefficient_use
#pragma pattern shared_coefficient_powerhint

Weight-based optimization
scheme for shared coefficient
objects

#pragma pattern puppeteer
#pragma pattern puppet

Power efficient communication
and dvfs for each puppet

#pragma pattern Agent-n-Depository
#pragma pattern Depository on Agent-n-Depository
#pragma pattern Deposit_use on Agent-n-Depository

Decentralized localization

Compiler Directives Support for Pattern-based
Power Optimization

Summary
 We present compiler techniques for low power.
 Pattern-based energy optimization method is presented

 Pipe and Filter
 MapReduce + Iterator
 BSP
 Shared Coefficient Object

 Significant power reduction is observed from preliminary
results

 Power optimizations with parallel patterns can be an important
direction for power optimization in the software layer.

 Related references can be seen in
http://www.cs.nthu.edu.tw/~jklee

http://www.cs.nthu.edu.tw/~jklee

	Compilers for Low Power With Parallel Design Patterns on Embedded Multicore Systems
	Outline
	Low Power Design
	Compilers for Power-Gating (Static Power)
	Component Activity Data-Flow Analysis
	Compact Power-Gating Control Placement
	投影片編號 7
	Results: Total Power Reduction
	The Low Power Hardware Design Trend
	VLIW DSP with Distributed Register Files
	Compiler Support for Low-Power with GPUs
	Outline
	Design Patterns
	Parallel Design Patterns
	Energy Optimization with Parallel Design Patterns
	Compiler Directives Support for Pattern-based Power Optimization
	Examples with Compiler Directives
	Re-visit with Compiler for Power-Gating
	Low Power Optimization on BSP Model�Motivation
	Pattern: BSP Model
	Low Power Optimization on BSP Model�Predicated-Power-Gating Operations
	Low Power Optimization on BSP Model�Multi-Threaded Power-Gating (MTPG)
	Pattern: Pipe and Filter
	Low Power for Pipe and Filter
	Rate-based profiling scheme for power optimization
	Evaluation Environment
	The Compilation and Simulation Flow
	Related Work: Programming Model Supports
	Pattern: MapReduce
	Low Power for MapReduce with Iterator
	Power Management Scheme for MapReduce with Iterator
	Preliminary Results: Object Detection
	Pattern: Shared Coefficient Object
	Power Optimization for Shared Coefficient Object
	Compiler Directives Support for Pattern-based Power Optimization
	Summary

