Self-Adaptive Computing for Many-Core Processors

Giovanni Beltrame Polytechnique Montréal

MPSoC - Otsu, 15-19 July 2013

Objectives

- Present the challenges of many-systems
- Show the advantages of self-adaptivity
- Describe a framework for self-adaptivity based on Markov Decision Processes
- Provide proof of the effectiveness of the methodology
- List possible future research directions

Beltrame – Self-Adaptive Computing

POLYTECHNIQUE MONTRÉAL

Rationale Self-Adaptivity Proposed Approach Results Wrap-Up

Two Motivating Examples

Complex heterogeneous distributed systems

- How to control the complexity of administration?
- How to manage global goals with variable demand?

Mobile Personal Computing

- How to manage a constantly changing environment?
- e.g. best trade-off between perceived performance and power consumption

Open Issues in Many-Cores Systems

Challenges

New challenges for designers and developers:

- Thermal management
- Parallelism exploitation
- Resource sharing conflicts
- Reliability and soft degradation
- ..

Interacting and not mutually exclusive!

Machine learning and AI provide tools to manage complexity

G. Beltrame – Self-Adaptive Computing

POLYTECHNIQUE MONTRÉAL

Rationale Self-Adaptivity Proposed Approach Results Wrap-Up

Self-Adaptive Systems

Definition

A self-adaptive computer is capable of adapting its behavior and resources to automatically accomplish a given goal, in changing environmental conditions

- Probes & parameters
- Fast algorithms
- Learn complex behaviour

Self-managment through: • Self-Configuration Self-Healing • Self-Optimization Self-Protection

Rationale Self-Adaptivity Proposed Approach Results Wrap-Up

Distributed vs Centralized

Autonomic computing is about computing systems capable of managing themselves without intervention by human beings [KC03]

G. Beltrame – Self-Adaptive Computing

POLYTECHNIQUE MONTRÉAL

Distributed approach: collections of autonomic elements

Autonomic Computing

Markov Decision Processes

Design Space Exploration (DSE)

Determination of the *optimal configuration*(s) of a system in relation to a set of objectives

Markov Decision Processes (MDPs)

A mathematical framework for modeling decision-making in situations where outcomes are partly random and partly under the control of a decision maker

G. Beltrame – Self-Adaptive Computing

Which is the "best" parameter change?

DSE: Two Spaces

Which is the "best" parameter change?

10/28 -

mistlab.ca

G. Beltrame – Self-Adaptive Computing

POLYTECHNIQUE MONTRÉAL Rationale Self-Adaptivity Proposed Approach Results Wrap-Up

DSE: Two Spaces

Which is the "best" parameter change?

The Pseudo-Random Approach

- Start from a set of configurations
- Evaluate metrics for all selected configurations (high cost)
- Choose the "best" and repeat the process
- Stop after a certain number of iterations

POLYTECHNIQUE MONTRÉAL Rationale Self-Adaptivity Proposed Approach Results Wrap-Up

The Pseudo-Random Approach

- Start from a set of configurations
- Evaluate metrics for all selected configurations (high cost)
- Choose the "best" and repeat the process
- Stop after a certain number of iterations

The Pseudo-Random Approach

- Start from a set of configurations
- Evaluate metrics for all selected configurations (high cost)
- Choose the "best" and repeat the process
- Stop after a certain number of iterations

G. Beltrame – Self-Adaptive Computing

POLYTECHNIQUE MONTRÉAL Rationale Self-Adaptivity Proposed Approach Results Wrap-Up

The MDP Approach

• Hypothesis: the effects of parameter changes are bounded

mistlab.c

12/28

The MDP Approach (2)

• Hypothesis: two actions available: *a*₁, *a*₂

- Assign a probability density function to each bound
- Decision: potential improvement vs. probability of success

POLYTECHNIQUE MONTRÉAL

Beltrame – Self-Adaptive Computing

Rationale Self-Adaptivity Proposed Approach Results Wrap-Up

States and Value Functions

Optimization as a Markov Decision Process (MDP)

- A system configuration is considered a state s
- A value function associates each state to a value q
- Solving the MDP ⇐⇒ given an initial s, find the action sequence that brings to the "best" state s_f

Value Function Example

A variant of the energy-delay product, that can favor one of the metrics

 $q = T^{1-\alpha}E^{\alpha}$ with $\alpha \in [0,1]$

States and Value Functions

Optimization as a Markov Decision Process (MDP)

- A system configuration is considered a state s
- A value function associates each state to a value q
- Solving the MDP ⇐⇒ given an initial s, find the action sequence that brings to the "best" state s_f

Value Function Example

A variant of the energy-delay product, that can favor one of the metrics

 $q = T^{1-\alpha}E^{\alpha}$ with $\alpha \in [0,1]$

G. Beltrame – Self-Adaptive Computing

POLYTECHNIQUE MONTRÉAL

Rationale Self-Adaptivity Proposed Approach Results Wrap-Up

States and Value Functions

Optimization as a Markov Decision Process (MDP)

- A system configuration is considered a state s
- A value function associates each state to a value q
- Solving the MDP ⇐⇒ given an initial s, find the action sequence that brings to the "best" state s_f

Value Function Example

A variant of the energy-delay product, that can favor one of the metrics

 $q = T^{1-\alpha}E^{\alpha}$ with $\alpha \in [0,1]$

The Decision Graph

The best action sequence brings to the state with the "best" value

G. Beltrame – Self-Adaptive Computing

POLYTECHNIQUE MONTRÉAL

Rationale Self-Adaptivity Proposed Approach Results Wrap-Up

The Decision Graph

The best action sequence brings to the state with the "best" value

15/28 -

mistlab.c

The Decision Graph

The best action sequence brings to the state with the "best" value

G. Beltrame – Self-Adaptive Computing

POLYTECHNIQUE MONTRÉAL

Rationale Self-Adaptivity Proposed Approach Results Wrap-Up

The Decision Graph

The best action sequence brings to the state with the "best" value

15/28 - mistlab.ca

POLYTECHNIQUE MONTRÉAL

Limiting the Graph Size

- Decision graph with many actions \implies state explosion
- Limit the depth of the tree with an event horizion /

G. Beltrame – Self-Adaptive Computing

POLYTECHNIQUE MONTRÉAL

Rationale Self-Adaptivity Proposed Approach Results Wrap-Up

Limiting the Graph Size

- Decision graph with many actions \implies state explosion
- Limit the depth of the tree with an event horizion /

POLYTECHNIQUE MONTRÉAL

Exploration-Exploitation Tradeoff

- Classic dilemma in learned decision making
- For unfamiliar outcomes: learning vs. exploiting knowledge
- Exploitation
 - Choose action expected to be best
 - May never discover something better
- Exploration
 - Choose action expected to be worse
 - Balanced by the long-term gain if it turns out better (Even for risk or ambiguity averse subjects)
 - nb: learning non trivial when outcomes noisy or changing

G. Beltrame – Self-Adaptive Computing

POLYTECHNIQUE MONTRÉAL

Rationale Self-Adaptivity Proposed Approach Results Wrap-Up

Exploration-Exploitation Tradeoff

- Tractable dynamic program in a restricted class of problems
- Solution requires balancing
 - Expected outcome values
 - Uncertainty (need for exploration)
 - Horizon/discounting (time to exploit)
- Optimal policy: Explore systematically
 - Choose best sum of value plus bonus
 - Bonus increases with uncertainty
- Intractable in general setting
 - Various heuristics used in practice

Proposed Framework

Many-Core Optimization as an MDP Problem with learning

Provide many-cores with the ability to learn how to improve their performance

A Near-Bayesian Approach

Similar to [KN09]

- Near-optimal w.r.t. to optimal Bayesian exploration
- Polynomial time complexity w.r.t the system parameters and the time horizon

POLYTECHNIQUE MONTRÉAL

Rationale Self-Adaptivity Proposed Approach Results Wrap-Up

Performance Metrics (aka Probes)

State Representation

The system parameters to be monitored and controlled:

- Application throughput
- Deadlines met
- System temperature
- ...

Effectors (aka Parameters)

Agent's Actions

The system parameters that need to be adjustet at run-time, e.g.:

- Scheduling policies
- Working frequency
- Degree of parallelism
- ...

G. Beltrame – Self-Adaptive Computing

POLYTECHNIQUE MONTRÉAL

Rationale Self-Adaptivity Proposed Approach Results Wrap-Up

Experimental Setup

Experimental Goal

- Show that learning can efficiently allocate resources
 - number of cores, frequency step...
- Such that applications deliver user-defined performance goals

Experimental Platform

- Adaptation manager implemented in Linux (Intel i7 quad-core)
- Heart-rate monitors for the PARSEC benchmark suite as probes
- Core selection and frequency allocation as parameters
- Two learning algorithms:
 - Q-Learning and Adaptive Dynamic Programming

Some Results: Throughput [PSC+13]

G. Beltrame – Self-Adaptive Computing

POLYTECHNIQUE MONTRÉAL

Rationale Self-Adaptivity Proposed Approach Results Wrap-Up

Some Results: Throughput [PSC+13]

Preliminary Results: Throughput [PSC+13]

Single-Agent Scenario: Results

Mean squared errors (MSE) w.r.t. desired throughputs

application	ADP (model-based)	QL (model-free)
application	cores	cores & freq.	cores	cores & freq.
blackscholes	0.16	0.11	0.12	0.12
canneal	0.11	0.11	0.12	0.10
raytrace	0.17	0.17	0.14	0.19
swaptions	0.10	0.10	0.11	0.11

G. Beltrame – Self-Adaptive Computing

POLYTECHNIQUE MONTRÉAL

Rationale Self-Adaptivity Proposed Approach Results Wrap-Up

Some Results: Contention

Multi-Agent Scenario: Distributed Decision Making

- Measure contention over shared resources
- Developed an ad-hoc synchronization library usign heartbeats
- Expected rational outcomes:
 - Force interleaved execution of contending threads
 - Force parallel execution of non-contending threads
- Serialized execution preferred with fine-grain synchronization
- Parallel execution preferred in absence of synchronization

Some Results: Contention

Multi-Agent Scenario: Results

- Mix 1: high degree of synchronization
- Mix 2: includes both synchronizing and non-synchronizing threads
- Mix 3: has no synchronization

Unmanaged w/ Adapt. Manager 151.25 ± 5.10 118.00 ± 0.70 176.25 ± 2.90 142.50 ± 1.10 216.00 ± 0.20 217.00 ± 0.20 Speed Up $1.28 \times$ $1.24 \times$ $0.00 \times$	Execution Time	Workload mix 1 mix 2 mix 3			
Speed Up $1.28 \times 1.24 \times 0.00 \times 0.20$	Unmanaged	151.25 ± 5.10	176.25 ± 2.90	216.00 ± 0.20 217.00 ± 0.20	
Speed-Op 1.20* 1.24* 0.99*	w/ Adapt. Manager Speed-Up	$\frac{118.00 \pm 0.70}{1.28 \times}$	142.50 ± 1.10 1.24×	0.99×	

G. Beltrame – Self-Adaptive Computing

POLYTECHNIQUE MONTRÉAL

Rationale	Self-Adaptivity	Proposed Approach	Results	Wran-Un

Wrap-Up

- Provided a framework for self-optimizing autonomic systems
- Two learning algorithms to discover self-optimizing strategies
- Promising experimental results

Future WorkMore advanced strategies for the multi-agent approach

- More advanced strategies for the multi-agent app
- Inclusion of time and real-time systems
- Experimentation on graceful degradation

References I

- Henry Hoffmann, Jonathan Eastep, Marco D. Santambrogio, Jason E. Miller, and Anant Agarwal, *Application heartbeats: a generic interface for specifying program performance and goals in autonomous computing environments*, Proceedings of the 7th international conference on Autonomic computing (New York, NY, USA), ICAC '10, ACM, 2010, pp. 79–88.
- J.O. Kephart and D.M. Chess, *The vision of autonomic computing*, Computer **36** (2003), no. 1, 41–50.
- J. Zico Kolter and Andrew Y. Ng, *Near-bayesian exploration in polynomial time*, Proceedings of the 26th Annual International Conference on Machine Learning (New York, NY, USA), ICML '09, ACM, 2009, pp. 513–520.
- J. Panerati, F. Sironi, M. Carminati, M. Maggio, G. Beltrame, P. J. Gmytrasiewicz, D. Sciuto, and M. D. Santambrogio, *On self-adaptive resource allocation through reinforcement learning*, Adaptive Hardware and Systems (AHS), 2013 NASA/ESA Conference on, 2013.

29/28 - mistlab.c