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Objectives

� Present the challenges of many-systems

� Show the advantages of self-adaptivity

� Describe a framework for self-adaptivity based on Markov Decision Processes

� Provide proof of the effectiveness of the methodology

� List possible future research directions
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Two Motivating Examples

Complex heterogeneous distributed systems

� How to control the complexity of administration?

� How to manage global goals with variable demand?

Mobile Personal Computing

� How to manage a constantly changing environment?

� e.g. best trade-off between perceived performance and power consumption
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Open Issues in Many-Cores Systems

Challenges

New challenges for designers and developers:

� Thermal management

� Parallelism exploitation

� Resource sharing conflicts

� Reliability and soft degradation

� ...

Interacting and not mutually exclusive!

Machine learning and AI provide tools to manage complexity
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Self-Adaptive Systems

Definition

A self-adaptive computer is capable of adapting its behavior and resources to
automatically accomplish a given goal, in changing environmental conditions

Challenges for many-core systems

� Probes & parameters

� Fast algorithms

� Learn complex behaviour

Observe

Decide Act

Probes

Metaheuristics

Parameters
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Autonomic Computing

Autonomic computing is about computing systems capable of
managing themselves without intervention by human beings [KC03]

Self-managment through:

� Self-Configuration

� Self-Optimization

� Self-Healing

� Self-Protection
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Distributed vs Centralized

Distributed approach: collections of autonomic elements

Related to multi-agent scenarios of artificial intelligence

Element

Managed element

KnowledgeMonitor Execute

Analyze Plan

Autonomic Manager

Managed element

Managed element

Managed element

Managed element
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Markov Decision Processes

Design Space Exploration (DSE)

Determination of the optimal configuration(s) of a system in relation to a set of
objectives

Markov Decision Processes (MDPs)

A mathematical framework for modeling decision-making in situations where outcomes
are partly random and partly under the control of a decision maker

G. Beltrame – Self-Adaptive Computing 9/28 – mistlab.ca
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DSE: Two Spaces
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Which is the “best” parameter change?
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DSE: Two Spaces
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The Pseudo-Random Approach
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Pseudo-random
selection

C' C''

C'''

� Start from a set of configurations

� Evaluate metrics for all selected configurations (high cost)

� Choose the “best” and repeat the process

� Stop after a certain number of iterations
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The Pseudo-Random Approach
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The MDP Approach

� Hypothesis: the effects of parameter changes are bounded
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Results

Possible Action
Results

� How to learn the effects of parameter changes?
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POLYTECHNIQUE MONTRÉAL Rationale Self-Adaptivity Proposed Approach Results Wrap-Up

The MDP Approach (2)

� Hypothesis: two actions available: a1, a2

E
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C' C''

a
1

a
2

Intersection
Area

Intersection
Area

� Assign a probability density function to each bound

� Decision: potential improvement vs. probability of success
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States and Value Functions

Optimization as a Markov Decision Process (MDP)

� A system configuration is considered a state s

� A value function associates each state to a value q

� Solving the MDP ⇐⇒ given an initial s, find the action sequence that brings to
the “best” state sf

Value Function Example

A variant of the energy-delay product, that can favor one of the metrics

q = T 1−αEα with α ∈ [0,1]
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The Decision Graph
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POLYTECHNIQUE MONTRÉAL Rationale Self-Adaptivity Proposed Approach Results Wrap-Up

Limiting the Graph Size

� Decision graph with many actions Ô⇒ state explosion

� Limit the depth of the tree with an event horizion l
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Exploration-Exploitation Tradeoff

� Classic dilemma in learned decision making

� For unfamiliar outcomes: learning vs. exploiting knowledge

� Exploitation
� Choose action expected to be best
� May never discover something better

� Exploration
� Choose action expected to be worse
� Balanced by the long-term gain if it turns out better (Even for risk or ambiguity

averse subjects)
� nb: learning non trivial when outcomes noisy or changing
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Exploration-Exploitation Tradeoff

� Tractable dynamic program in a restricted class of problems

� Solution requires balancing
� Expected outcome values
� Uncertainty (need for exploration)
� Horizon/discounting (time to exploit)

� Optimal policy: Explore systematically
� Choose best sum of value plus bonus
� Bonus increases with uncertainty

� Intractable in general setting
� Various heuristics used in practice
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Proposed Framework

Many-Core Optimization as an MDP Problem with learning

Provide many-cores with the ability to learn how to improve their performance

A Near-Bayesian Approach

Similar to [KN09]

� Near-optimal w.r.t. to optimal Bayesian exploration

� Polynomial time complexity w.r.t the system parameters and the time horizon
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Performance Metrics (aka Probes)

State Representation

The system parameters to be monitored and controlled:

� Application throughput

� Deadlines met

� System temperature

� ...

[HES+10]
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POLYTECHNIQUE MONTRÉAL Rationale Self-Adaptivity Proposed Approach Results Wrap-Up

Effectors (aka Parameters)

Agent’s Actions

The system parameters that need to be adjustet at run-time, e.g.:

� Scheduling policies

� Working frequency

� Degree of parallelism

� ...
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Experimental Setup

Experimental Goal

� Show that learning can efficiently allocate resources
� number of cores, frequency step...

� Such that applications deliver user-defined performance goals

Experimental Platform

� Adaptation manager implemented in Linux (Intel i7 quad-core)

� Heart-rate monitors for the PARSEC benchmark suite as probes

� Core selection and frequency allocation as parameters

� Two learning algorithms:
� Q-Learning and Adaptive Dynamic Programming
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Some Results: Throughput [PSC+13]
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Preliminary Results: Throughput [PSC+13]

Single-Agent Scenario: Results

Mean squared errors (MSE) w.r.t. desired throughputs

application
ADP (model-based) QL (model-free)
cores cores & freq. cores cores & freq.

blackscholes 0.16 0.11 0.12 0.12
canneal 0.11 0.11 0.12 0.10
raytrace 0.17 0.17 0.14 0.19

swaptions 0.10 0.10 0.11 0.11
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Some Results: Contention

Multi-Agent Scenario: Distributed Decision Making

� Measure contention over shared resources

� Developed an ad-hoc synchronization library usign heartbeats

� Expected rational outcomes:
� Force interleaved execution of contending threads
� Force parallel execution of non-contending threads

� Serialized execution preferred with fine-grain synchronization

� Parallel execution preferred in absence of synchronization
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Some Results: Contention

Multi-Agent Scenario: Results

� Mix 1: high degree of synchronization

� Mix 2: includes both synchronizing and non-synchronizing threads

� Mix 3: has no synchronization

Execution Time
Workload

mix 1 mix 2 mix 3

Unmanaged 151.25 ± 5.10 176.25 ± 2.90 216.00 ± 0.20
w/ Adapt. Manager 118.00 ± 0.70 142.50 ± 1.10 217.00 ± 0.20

Speed-Up 1.28× 1.24× 0.99×
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Wrap-Up

� Provided a framework for self-optimizing autonomic systems

� Two learning algorithms to discover self-optimizing strategies

� Promising experimental results

Future Work

� More advanced strategies for the multi-agent approach

� Inclusion of time and real-time systems

� Experimentation on graceful degradation
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The End

Questions?
http://mistlab.ca
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