SMYLEref: A Reference Architecture for Manycore-Processor SoCs

Masaaki Kondo (The University of Electro-Communications)

MPSoC'13 (July 15, 2013)

Acknowledgement

- SMYLE Project
 - Scalable ManY-core for Low-Energy computing
 - This research was supported in part by New Energy and Industrial Technology Development Organization
- Special thanks to SMYLE project members

Scalability of Parallel Programs

In-Order Core@1GHz (up to 128cores) w/ private 32KB L1 & 512KB L2

Issues in Manycore Processors

- Poor scalability in most of single applications
 - Lack of inherent parallelism
 - Memory access bottleneck
 - Barrier synchronization overhead

- Our Goal: Manycore Processor SoC
 - Efficient parallel processing for high-performance and low-power
 - Exploiting Data / Thread / Task / Application level parallelism
 - Effective memory hierarchy management
 - High-speed barrier synchronization

Design Concept of SMYLEref

- VAM: Virtual Accelerator on Many-core
 - Flexible and effective mapping of multiple tasks
 - Uses many simple and low-power cores

SMYLEref Manycore-Processor

- SMYLEref: a reference architecture for VAM
 - Bus-based multicore processor forms a cluster
 - Clusters are connected by a two-dimensional on-chip network (NoC)
 - → Reduce hardware overhead of routers and NoC

MPSoC'13 (July 15, 2013)

6

Structure of Clusters and NoC

- Processor core: Geyser core
 - Developed in a national research project "Innovative Power Control for Ultra Low-Power High-Performance System LSIs"
 (PI: Prof. Nakamura at U.Tokyo)
 - Based on MIPS R3000, evaluated with real LSI implementation

Cluster

- Processor Cluster
 - 8 processor cores,
 - distributed shared L2 cache
 - a router for 2D-mesh NoC
- Peripheral Cluster
 - DRAM controller
 - I/O controller
 - dedicated router for 2D-mesh NoC

MPSoC'13 (July 15, 2013)

7

Hardware Extensions for VAM

- Reconfigurable L1 data cache
 - Each L1 cache is used either as cache or Scratch-Pad-Memory
 - Determined by SMYLE compiler depending on applications
- Indexing management for distributed shared L2 cache
 - Base: each L2\$ slice is shared by all clusters
 - Option: allocate set of L2\$ slices to a particular VAM
 - Introduce dynamic address translation for L2 cache indexing
 - Avoid L2 cache contention between VAMs
- Group hardware barrier
 - Supports hardware barrier synchronization in arbitrary group of cores within VAM

MPSoC'13 (July 15, 2013)

Flexible HW Barrier Support

- Tree style dedicated barrier network
 - Realizes high-speed barrier sync. within each VAM
 - Parallel barrier operation for VAMs

Programming Environment for SMYLEref

- A number of parallel programming models, languages, and frameworks
 - OpenMP, MPI, OpenCL, Intel Threading Building Blocks, Nvidia CUDA, etc
- OpenCL is a natural choice
 - Open, royalty-free standard by Khronos Group
 - Based on C Language
 - Support of heterogeneous architectural platforms
 - Platform independent
 - Intel's multi-core CPUs
 - Nvidia's GPUs
 - AMD's GPUs
 - SONY/IBM/Toshiba's Cell B.E.
 - Supports both data and task-level parallelisms

MPSoC'13 (July 15, 2013)

OpenCL Architecture/Memory Model

MPSoC'13 (July 15, 2013)

11

Limitations of Existing OpenCL for GPUs

- Parallel execution of multiple applications is impossible
 - A single application occupies the entire device (all cores) at a time
- Hard to guarantee real-time constraints
 - Large performance overhead for context creation and dispatch
 - Such overhead is hardly predictable in multi-tasking systems

MPSoC'13 (July 15, 2013)

12

SMYLE OpenCL Environment

Key Features of SMYLE OpenCL

- Low runtime overhead
 - Very short start time
 - Static creation of contexts and objects
 - Static mapping of applications
- Multi-level parallel execution
 - Multiple applications
 - In each application
 - Task-parallel execution
 - Data-parallel execution

SMYLE OpenCL Toolkit

OpenCL Program 1

Device Code 1 Device Code 2 Device Code 3

Mapper

- Cross-Compiler
 - GCC as is
- Runtime Library
 - A limited set of OpenCL
 APIs have been implemented for the SMYLEref architecture
- Task Mappers
 - Single-context (exclusive) static mapping
 - Multi-context static mapping
- SMYLEref Native Simulator
 - Can execute OpenCL programs w/ runtime library on Linux-based host PC

MPSoC'13 (July 15, 2013)

15

OpenCL Program 3

Host Code 1..3

Light-Weight Run-Time System

OpenCL Program 2

Cross-Compiler

Evaluation Platform for Manycores

- Requirement
 - Evaluate/verify many number of cores with high scalability
 - Evaluate programs with realistic working set including OS
 - Flexibility, Cost, etc.
- Candidate of the Platform
 - Software Simulator / LSI implementation / FPGA Prototyping

	Scalability	Accuracy	Flexibility	Development Cost	Evaluation Speed
Software	Low	Medium	Very High	Low	Low
Real LSI	Medium	Very High	Low	Very High	Very High
FPGA	Very High	Very High	High	Medium	High

FPGA prototyping is fairly advantageous

Development Environment

- FPGA board: Xilinx ML605 Evaluation board with Virtex-6
- HDL: Verilog HDL
- Logic Synthesis, Mapping, P&R: Xilinx ISE 14.2

ML605 Evaluation Board	
FPGA device	Virtex-6 XCVLX240T
SDRAM	DDR3 SO-DIMM
I/O port	UART, USB, DVI、CompactFlash、SMA
Clock-input	200MHz & 66 MHz

Virtex-6 (XCVLX240T)	
Technology	65nm CMOS, 1.0V
Logic Cells	241,152
CLB Slices	37,680
Block RAM	14,975 Kbit
Num of user I/O	720

MPSoC'13 (July 15, 2013)

17

Design of Evaluation Platform

Photographic View of Evaluation Platform

MPSoC'13 (July 15, 2013)

19

Preliminary Evaluation

- Hardware configuration
 - 8 core x 16 clusters (128 cores in total) + 1peripheral cluster
 - Core clock: 10MHz, Bus and router clock: 5MHz, DDR3 SDRAM: 100MHz
 - without hardware coherence
- Software Environment
 - Benchmark: FFT and LU from SPLASH2
 - Compiler: gcc 4.4.6 targeted for MIPS-1
 - Floating point operation: software emulation (Soft Float)
- Parallel processing API
 - In house simple pthread library for SMYLEref Evaluation Platform

Evaluation Result: Parallel Speedup

- Correctly working up to 128 cores
- Poor scalability due to unsupported cache coherence
 - Heap data is always uncacheable
 - Needs cache flush in barrier synchronization and atomic operation

valuation Environment

Scalability of Evaluation Environment

- Evaluation time comparison SMYLEref v.s. Software simulator
 - Software simulator: MARSS-x86 simulator
- SMYLEref on FPGA has very good scalability as an evaluation environment

21

Scalability of OpenCL Benchmark

• 1 host-core + 127 device core

Execution Time Breakdown

 Start time overhead (red bar) is almost constant to the number of cores

Evaluation Result: HW barrier

Summary

- SMYLEref for Manycore-Processor SoCs
 - Key Concept: Virtual Accelerator on Many-core (VAM)
 - -> Flexible and effective mapping of multiple tasks
- OpenCL Programming Environment for SMYLEref
 - Exploit data, thread, and application-level parallelisms
 - Low runtime overhead & multi-task
- Evaluation platform on FPGA
 - Can evaluate parallel programs up to 128 cores
 - OpenRISC version of SMYLEref evaluation environment will be available under BSD license