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Audio processing requirements  

• Audio processing requirements vary widely 

– For different devices 

– For different use cases of a device 

• Increasing performance demands 

– HD audio, multi-channel, higher sample rates 

– Wideband voice, advanced pre-/post-processing 

– > 500MHz today, likely to double in coming years 

• Low power requirements 

– Mobile devices with “always on” features 

– Voice trigger, voice control 

– ~10MHz command recognition 
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Need for scalable audio solutions 

• Scalability in performance 

– With low power consumption across performance range  

 

• To support different products 

– Products targeted at different market segments 

– Products developed over time (future proof) 

– SoC integrator wants to work with single supplier 

 

• To support different use cases of product 

– Different use cases in multi-functional products 

– From “always on” voice trigger to high-end audio / voice features 
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SoundWave Audio Subsystem 
Hardware architecture 
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Multi-core audio processor 
With configurable core 

• Multi-core 

– Design-time scalability via number of cores 

– Run-time scalability via power-up/down of cores 

– Power consumption (mW/MHz) equal to single core 

• Configurability and extensibility 

– Design-time scalability through specialization 

– Reduce performance requirements (MHz) of audio tasks 

• Processor family 

– Design-time scalability through processor selection 

– Run-time scalability via DVFS techniques 

– Performance limited by fastest processor in family 

– High frequency makes processor sensitive to memory latency 
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Multi-core programming 

• Mapping of audio processing functions 

– Function can execute on host processor or on audio processor core 

– Each function fits on single core  lower bound on core performance 

– Broad portfolio of available functions 

• Build and execute use cases from host processor 

– Transparent off-loading of audio processing 

– Transparent core crossings 

• Efficient communication 

– Keep data / control local, avoid copying overhead 
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Audio plug-in 

• High-level API for building and executing use cases 

• Plug-in makes core crossings transparent 

– Audio functions off-loaded to ARC multi-core audio processor 

• SW infrastructure takes care of data streaming 

– Between host and audio processor and among cores of audio processor 
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File player code snippet 
GStreamer example 

pipeline = gst_pipeline_new ("my-pipeline"); 
 

source = gst_element_factory_make ("filereader", "filereader"); 

g_object_set (G_OBJECT (source), "location", filename, NULL); 

g_object_set (G_OBJECT (source), "track", track, NULL); 

g_object_get (G_OBJECT (source), "decodertype", &decodertype, NULL); 

 

decoder = gst_element_factory_make ("decoder", "decoder"); 

g_object_set (G_OBJECT (decoder), "decodertype", decodertype, NULL); 

g_object_set (G_OBJECT (decoder), "dspid", 2, NULL); 

 

post-proc = gst_element_factory_make ("post-proc", "post-processing"); 

 

sink = gst_element_factory_make ("sink", "renderer I2S"); 

g_object_set (G_OBJECT (sink), "sinktype", I2S, NULL); 

 

gst_bin_add_many (GST_BIN (pipeline), source, decoder, post-proc, sink, NULL); 

gst_element_link_many (source, decoder, post-proc, sink, NULL); 

 

gst_element_set_state (pipeline, GST_STATE_PLAYING); 
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Media Streaming Framework 

• Media Streaming Framework for audio processing 

• Employs IPC layer for heterogeneous multi-core / multi-OS 

• Transparent core crossings 

• Efficient (zero-copy data transfer) 

•  Building and executing use cases from host processor 
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Integration Example 
Application processor and ARC audio processor 
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Conclusions 

• Need for scalable audio solution 

– To support different products & use cases 

• Multicore audio processor offers scalability 

– Design-time and run-time scalability 

• Streaming framework supports multicore programming 

– Make core crossings transparent 

– Same audio software for single- and multicore 

– With audio plug-in on host with high-level API 

– Build and execute use cases from host processor 

• Scalable multicore audio solution 

– Makes audio off-load easy 
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Thank You 


