
© Synopsys 2013 1

Scalable Multicore Audio Solutions

Pieter van der Wolf

MPSoC 2013

July 15 – 19, 2013

© Synopsys 2013 2

Audio processing requirements

• Audio processing requirements vary widely

– For different devices

– For different use cases of a device

• Increasing performance demands

– HD audio, multi-channel, higher sample rates

– Wideband voice, advanced pre-/post-processing

– > 500MHz today, likely to double in coming years

• Low power requirements

– Mobile devices with “always on” features

– Voice trigger, voice control

– ~10MHz command recognition

5 stage pipe-line

32-bit Execution Unit

XY

Memory

ICCM DCCM

DSP Extensions

JTAGCustom Instructions

AS211SFX Voice Processor

© Synopsys 2013 3

Need for scalable audio solutions

• Scalability in performance

– With low power consumption across performance range

• To support different products

– Products targeted at different market segments

– Products developed over time (future proof)

– SoC integrator wants to work with single supplier

• To support different use cases of product

– Different use cases in multi-functional products

– From “always on” voice trigger to high-end audio / voice features

Design time

scalability

Run time

scalability

© Synopsys 2013 4

SoundWave Audio Subsystem
Hardware architecture

Analog

Codec

ARC

Audio

Processor

ADC

DAC

S/PDIF

Host

Processor

USB
Audio Subsystem
Hardware Architecture

I2S

Smart

Local

Interconnect

S/PDIF

I2S

HDMI

System

Memory

Clock

management

Reset

controller

Headphone

Line

Microphone

Line

I2S input

I2S output

S/PDIF input

S/PDIF output

SRAM

© Synopsys 2013 5

Multi-core audio processor
With configurable core

• Multi-core

– Design-time scalability via number of cores

– Run-time scalability via power-up/down of cores

– Power consumption (mW/MHz) equal to single core

• Configurability and extensibility

– Design-time scalability through specialization

– Reduce performance requirements (MHz) of audio tasks

• Processor family

– Design-time scalability through processor selection

– Run-time scalability via DVFS techniques

– Performance limited by fastest processor in family

– High frequency makes processor sensitive to memory latency

© Synopsys 2013 6

Multi-core programming

• Mapping of audio processing functions

– Function can execute on host processor or on audio processor core

– Each function fits on single core lower bound on core performance

– Broad portfolio of available functions

• Build and execute use cases from host processor

– Transparent off-loading of audio processing

– Transparent core crossings

• Efficient communication

– Keep data / control local, avoid copying overhead

Audio

decoder

Renderer

7.1 I2S

File

reader

Audio

post-processing

Application

Audio

decoder

Renderer

7.1 I2S

File

reader

Audio

post-processing

Application

© Synopsys 2013 7

G
fx

V
id

e
o

Audio plug-in

• High-level API for building and executing use cases

• Plug-in makes core crossings transparent

– Audio functions off-loaded to ARC multi-core audio processor

• SW infrastructure takes care of data streaming

– Between host and audio processor and among cores of audio processor

Audio Subsystem HW/SW Architecture

Host Processor

Application

ARC Audio Processor

Decoding

+

encoding

Pre- and

post-

processing

Source

+

Sink

Peripherals

& clocks

Drivers OS SW infrastructure

G
fx

Post-proc
File

reader
Decoder Renderer

Application

Audio

decoder

Renderer

I2S
Post-

processing

© Synopsys 2013 8

File player code snippet
GStreamer example

pipeline = gst_pipeline_new ("my-pipeline");

source = gst_element_factory_make ("filereader", "filereader");

g_object_set (G_OBJECT (source), "location", filename, NULL);

g_object_set (G_OBJECT (source), "track", track, NULL);

g_object_get (G_OBJECT (source), "decodertype", &decodertype, NULL);

decoder = gst_element_factory_make ("decoder", "decoder");

g_object_set (G_OBJECT (decoder), "decodertype", decodertype, NULL);

g_object_set (G_OBJECT (decoder), "dspid", 2, NULL);

post-proc = gst_element_factory_make ("post-proc", "post-processing");

sink = gst_element_factory_make ("sink", "renderer I2S");

g_object_set (G_OBJECT (sink), "sinktype", I2S, NULL);

gst_bin_add_many (GST_BIN (pipeline), source, decoder, post-proc, sink, NULL);

gst_element_link_many (source, decoder, post-proc, sink, NULL);

gst_element_set_state (pipeline, GST_STATE_PLAYING);

DAC FileReader Decoder Post-proc SDCARD Sink

Host

Core 2

Core 1

Core 1

© Synopsys 2013 9

Media Streaming Framework

• Media Streaming Framework for audio processing

• Employs IPC layer for heterogeneous multi-core / multi-OS

• Transparent core crossings

• Efficient (zero-copy data transfer)

• Building and executing use cases from host processor

File

reader
Decoder Renderer

File reader
Post-proc.

Application

Decoder Post-proc. Renderer

Host

Host – ARC

streaming

ARC – ARC

streaming

Local

streaming

© Synopsys 2013 10

Integration Example
Application processor and ARC audio processor

Application Processor ARC Audio Processor

MQX OS

RPC/

IPC

Host Operating System

RPC/

IPC
Audio Data, Control

MSF Framework

MSF Framework

(proxy to remote implementation)

• Use case implemented on application

processor with high-level API

• Audio processing off-loaded to ARC audio

processor

• Use case created and controlled from

application processor (host processor)

• Transparent core crossings

MSF & Codec, Pre- & Post-processing API

Gstreamer Elements & Media Player

DAC

Down-mix,

…

Sound

processing

Decoding

S/PDIF Encoding

DAC

S/PDIF

SoundWave

© Synopsys 2013 11

Conclusions

• Need for scalable audio solution

– To support different products & use cases

• Multicore audio processor offers scalability

– Design-time and run-time scalability

• Streaming framework supports multicore programming

– Make core crossings transparent

– Same audio software for single- and multicore

– With audio plug-in on host with high-level API

– Build and execute use cases from host processor

• Scalable multicore audio solution

– Makes audio off-load easy

© Synopsys 2013 12

Thank You

