

Smart Sensor Systems

The Next Multiprocessor Challenge

MPSoC2013, Otsu, Japan

Dr. Yankin Tanurhan VP Engineering, Solutions Group Synopsys, Inc.

16/7/2013

Agenda

Introduction

Smart Sensor Systems

Components

Performance

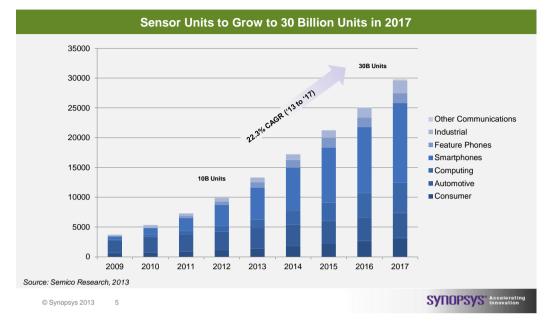
Conclusions

Introduction

Analog sensors meet digital and software

© Synopsys 2013 3

SYNOPSYS[®] Accelerating


Introduction

- Smart Sensor: adding a (digital) CPU core to an analog sensor
- The second secon

- Digital processing
 - Digital filtering
 - Calibration, linearization
 - Digital interfaces
 - Sensor fusion

SYNOPSYS[®] Accelerating Innovation

Significant Growth in Sensors

Introduction

Topics addressed in this presentation

- · Smart sensor systems
 - Analog sensor becomes intelligent sensor
 - Multitude of sensors (analog and digital) combined for more precise data
 - Sensor fusion host off-loading
- Components that are part of a smart sensor system
- Performance requirements
 - Area, power, footprint

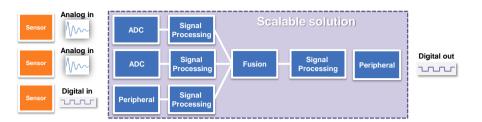
Smart Sensor Systems

Digital processing Scalable solution Sensor system partitioning

© Synopsys 2013 7

SYNOPSYS[®] Accelerating

Smart Sensor System


Evolution: more digital processing te Compo Analog in Complexity and Performance Digital out Digital Filter Peripheral ····· Analog ir \mathbb{N} ADC Digital out Signal ····· Mixe Perinheral Digital in CPU based SoC Analog in Signal Processing Digital out Signal Processin Mixer Peripheral ww Digital in Peripheral Signal ocessin

© Synopsys 2013

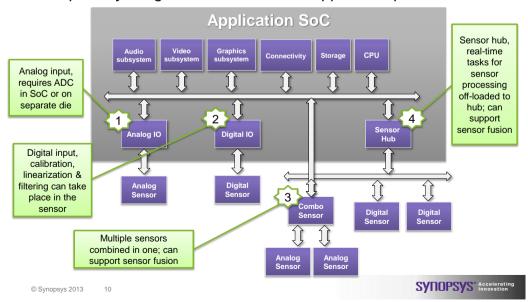
8

SYNOPSYS[®] Accelerating Innovation

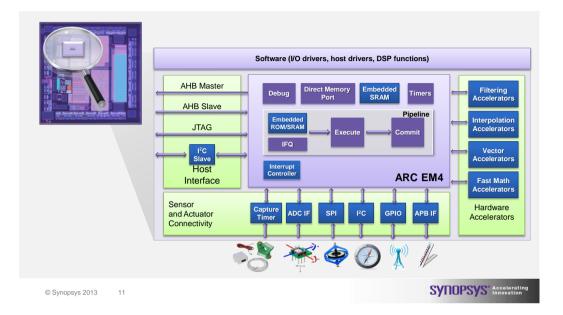
Sensor Systems Getting More Complex

- Increased processing drives higher performance processor
- Sensor fusion with multiple analog & digital sensors requires higher level of integration
- Transitioning from discrete ICs to integrated sensor control within larger, more complex SoC

© Synopsys 2013


9

8-bit	> 32-bit
Single Sensors	Multiple Sensors
Discrete	Integrated


SYNOPSYS[®] Accelerating

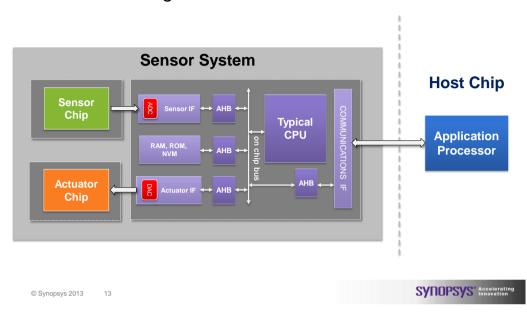
Smart Sensor System

Multiple ways to get sensor data to the application processor

Integrated Sensor IP Subsystem

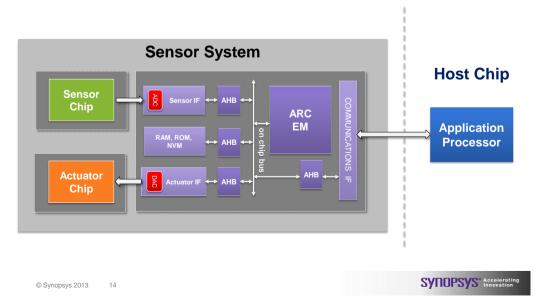
Components

Closely coupled memories

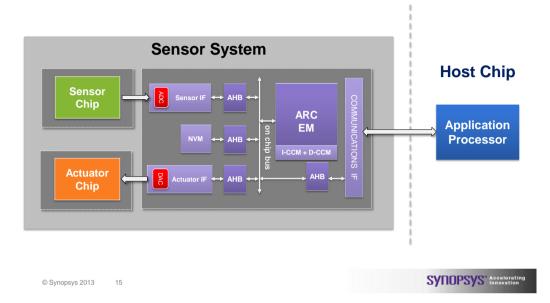

Tightly coupled IO functions

DSP extensions/Hardware accelerators

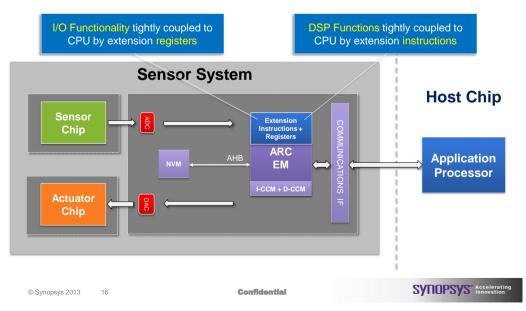
Software view


Typical CPU based Sensor System

bus-based design


Typical CPU based Sensor System

bus-based design using ARC EM processor

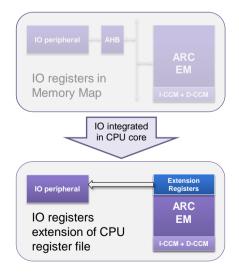

Typical CPU based Sensor System

optimization: use closely-coupled memories

Optimized CPU based Sensor System

ARC EM Processor with IO and DSP extensions

IO functionality


Overview of sensor interfaces

	Function	Range	Interface	
	Motion	Accelerometers	Analog/PWM/SPI/I ² C	
	Magnetic and Hall	Gyroscopes	Analog/SPI/I ² C	Compose IF
		Angle	Analog/SPI/I ² C	<u>Sensor IF</u> ADC if
8		Rotational speed	Analog ^[current/voltage]	I2C
		Hall effect	Analog ^[current] /SPC/PWM/SENT	SPI
	Proximity	Proximity	I ² C/SPI	PWM
	Optical	Ambient	Analog ^[current] /I ² C/PWM	
		Distance	Analog ^[voltage]	
		CCD image	Serial Digital + GPIO	
		CMOS image	Parallel Digital + GPIO/SPI/I ² C	Host IF
	Pressure	Compensated	Analog ^[voltage]	I2C SPI
		Uncompensated	Analog ^[voltage]	UART
		Integrated	Analog ^[voltage]	(on-chip) bus
	Temperature	Analog output	Analog[voltage]/Switch[on/off/interrupt]	
		Digital output	I ² C/SMBus/SPI/1-wire/PWM/switch ^[on/off] /QSPI/SST	
		Silicon	Analog ^[resistance]	
				Source: Silica, Sparkfun

© Synopsys 2013 17

IO functionality

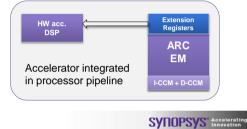
Tightly integrated IO

· "Tightly integrated"

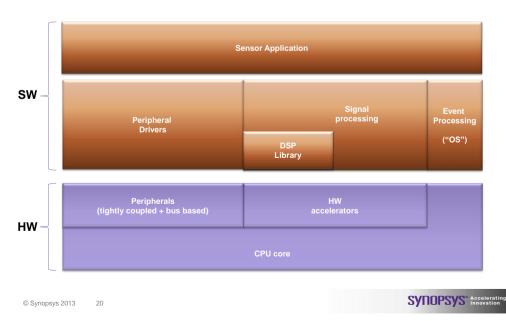
- Start from existing bus based IO peripheral
- Eliminate interface to on-chip bus
- Replace *load/store* instructions to IO peripheral by *register move* instructions

© Synopsys 2013 18

SYNOPSYS[®] Accelerating Innovation


HW support for DSP Functions

Accelerate application code


- Reduce memory footprint
 - HW accelerator instruction(s) replaces multiple SW statements or functions
- · Reduces cycle count
 - more performance,
 - or less power
- Some silicon area increase
- Selection of HW accelerators tailored to (sensor) application

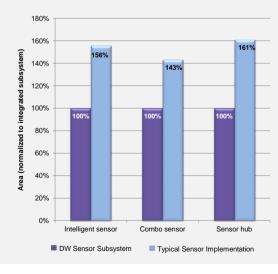
© Synopsys 2013 19

- DSP functions
 - Math
 - Complex Math
 - Filtering
 - FIR, IIR, correlation, ...
 - Matrix/vector
 - Interpolation

Software

Performance

Area benefits


Cycle count and memory footprint benefits

System power benefits

Embedded Non-Volatile Memories

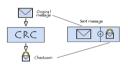
© Synopsys 2013 21

SYNOPSYS[®] Accelerating Innovation

Significant Area & Power Benefits

- Typical Sensor Implementation
 40- 60% Larger
- Typical Sensor Implementation
 - Smaller & significantly more power efficient
- Synopsys' Integrated Sensor Subsystem
 - Smaller and significantly more power efficient

Functions Implemented in HW or SW for Area & Power Trade-offs


Software Only Functions	Hardware Functions	FIR Filtering
Cos, Sin Sqrt	Multiply/Accumulate (MAC)	6x reduction
Conjugate	Accumulate/Multiply (ACM)	cycle coun
DOT	Sine/Cosine (SIN/COS)	
Magnitude	Square Root (SQRT)	
MaqSquared	Absolute Value (ABS)	Square Root
Multiply	Add (ADD)	cycle coun
Convolute	Subtract (SUB)	Cycle could
Correlate	Multiply (MULT)	
LMS, FIR, IIR	Negate (NEGATE)	CRC Check
Add, multiply, transpose	Shift (SHIFT)	25x reduction
Linear, Bilinear	Scale (SCALE)	cycle coun

Fewer Cycles Equals Lower Power, Higher Performance

© Synopsys 2013 23

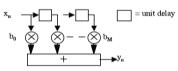
HW accelerator Cyclic Redundancy Check

Host communication check

CRC polygon :1+x¹+x²+x⁴+x⁵+x⁷+x⁸+x¹⁰+x¹¹+x¹²+x¹⁶+x²²+x²³+x²⁶+x³²;

Metrics @ 180nm		Software Cycle count Optimized	CRC accelerator (hardware)
Footprint ROM	Bytes	1420	12
Cycles	#	76	3
Accelerator	Gates	0	475
Memory footprint	Gates	3140	25
Total area	Gates	3140	500

- ✓ Cycle count reduced by factor 25
- ✓ Area reduces (!) by 2640 ND2 equivalent gates (85%)
- ✓ CRC Code footprint reduces from 104 instructions to 3 instructions only


HW accelerator Square root

$Y = \sqrt{X}$

Metrics @ 180nm 48bit input 24bit output		Software Cycle count optimized	Hardware accelerator (cycle count opt)	Hardware accelerator (pipelined opt)	Hardware accelerator (area opt)
Footprint ROM	Bytes	272	4	4	4
Cycles ^a	#	353*n	n	6+n	24*n
Accelerator	Gates	0	3740	5490	1075
Memory footprint	Gates	600	10	10	10
Total area	Gates	600	3750 ^b	5500	1085

- ✓ Cycle count reduced by factor 14
- Area increases only 485 ND2 equivalent gates
- ✓ SQRT Code footprint reduces from 136 instructions to 1 instructions only

© Synopsys 2013 25

SYNOPSYS[®] Accelerating Innovation

N-taps asymmetric FIR filter: FIR[i] = (SUM k in [0..N): C[k] * X[i-k])

Finite Impulse Response

HW accelerator

Metrics @ 180nm # taps =30		Software Cycle count Optimized	MAC accelerator (hardware)
Footprint ROM	Bytes	254	146
Cycles	#	2673	430
Accelerator	Gates	0	1520
Memory footprint	Gates	560	300
Area	Gates	560	1820

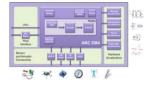
- ✓ Cycle count reduces by factor 6
- Area increases only 1260 ND2 equivalent gates
- ✓ FIR Code footprint reduces from 86 instructions to 58 instructions only

Power Benefits Sensor fusion application

- 9-D sensor fusion
 - Combo sensor based design
 - Design optimized using:
 - tightly coupled IO functions
 - addition of fusion specific HW accelerators

Metrics @ 90nm CPU + IO + Accelerators		Bus-based design	Optimized design
Cycles	[#]	100%	10%
Dynamic Power	[uW/MHz]	100%	107%
Standard cell Area	Gates	100%	121%

Overall power reduction of 9.3x


© Synopsys 2013

27

SYNOPSYS[®] Accelerating Innovation

Conclusions

- Components
- Performance
- measurements

Conclusions

Components for Smart Sensor System

- Identified Smart Sensor System variants
 - Intelligent sensor and Combo sensor (focus of presentation)
 - Sensor hub
- · Addressed components that are part of a Smart Sensor System
 - Optimized CPU based solution
 - IO peripheral (tightly coupled) + driver SW
 - HW accelerators for DSP functions (tightly coupled) + DSP SW
- Mix of tightly coupled IO and bus-bused IO peripherals possible (esp. when area is not high priority)

© Synopsys 2013 29

SYNOPSYS[®] Accelerating Innovation

Conclusions

Performance

- · Performance improvements by
 - Tightly coupled IO peripherals
 - Tightly coupled HW accelerators
- Footprint
 - Silicon area, Software memory footprint (reducing ROM size)
- Power
 - Lower CPU core frequency
- · Predictability
 - Direct access to tightly coupled IO and HW accelerators

© Synopsys 2013 30

SYNOPSYS[®] Accelerating

Conclusions

Measurements

- · All measurement and studies are based on Synopsys product portfolio
 - ARC EM core
 - Tool suite for customizing ARC EM core
 - development of tightly coupled EIA extensions/instructions
 - Complete SW development tool suite
 - EM Starter Kit development system

© Synopsys 2013 31

SYNOPSYS[®] Accelerating Innovation

Synopsys

